コンピュータ解析法による日本産ホタルの発光パターン

大場信義＊${ }^{*}$ 鈴木浩文 ${ }^{* *}$ •山崎柄根 ${ }^{* *}$

Luminescent pattern of Japanese fireflies based on computer analysis
OHBA N．＊，SUZUKI H．＊＊and YAMASAKI T．＊＊

Abstract

Nocturnal fireflies communicate to each other by species－specific light signals．Therefore，it is important to analyze the luminescent pattern in the study of communication system of fireflies．We recorded luminescent signals of 11 species of Japanese fireflies and then analyzed them by a new method based on computer analysis．The results were basically comparable to that of previous analyzing system using analog data，and time resolution and precision of the records were improved． Furthermore，power spectral density of flash pattern was analyzed in some fireflies．

はじめに

ホタルの発光パターンは種固有であり，コミュニケー ションを行うための重要なシグナルとなっている。ホタ ルの発光行動やコミュニケーション・システムを解明す る上で発光パターンの詳細な解析は不可欠であり，これ まで日本産ホタルを対象として発光パターンの記録解析 が目視観察，ストップウオッチ， $8 \mathrm{~mm} \cdot 16 \mathrm{~mm}$ シネカ メラ，ホトトランジスタ，イメージ・インテンシファイ アを駆使した映像から，ペンレコーダ記録によって行わ れてきた（大場，1979，1985，1986；OHBA，1983）。し かし，これらの方法は明滅の早い発光シグナルの記録•解析にはペンレコーダが追従できなかったために，コン ピュータによる発光パターンの記録解析方法が確立され た（牧野ほか，1994）。この方法により映像からの解析分解能の限界まで精度を飛嚾的に上げることが可能となる とともに，解析結果のファイル保存によってデータ管理•再利用が容易になった。本報では日本産ホタル各種 の発光，特に雄の探雌飛㶳時の発光パターンをコンピ

コータ解析し，波形特性を比較検討した。

材料および方法

材料

第1表に示したホタルの発光，特に雄の探雌飛羳時の発光パターンを解析した。

測定方法

筆者の一人である大場が野外において，イメージ・イ ンテンシファイアを装着したビデオカメラでホタルの発光行動を録画した。テレビモニターに再生されたホタル の発光強度の時間的な変化は牧野ほか（1994）の方法によ ってパーソナルコンピュータに取り込み解析した。すな わちテレビモニター上のホタルの発光を光センサーでと らえ，電気信号に変換された発光信号は増幅され， 50 Hz のローパスフィルターを通した後に 100 Hz のサン プリング速度でデイジタル信号に変換されてパーソナル コンピュータに取り込まれた。光センサーにはCdSセ ルを用いた。ただし，ヘイケボタルの一部とツシマヒメ ボタルについては光電子増倍管を用いた。

[^0]
第1表 発光パターンの記録解析を行ったホタル。（）内は生息地

```
Lampyridaeホタル科
    Luciolinaeホタル亜科
        Luciolaホタル属
            Luciola cruciata MOTSCHULSKY,1854 ゲンジボ夕ル
                        西日本型ゲンジボタル(熊本県菊池郡旭志村)
                        東日本型ゲンジボタル(神奈川県横須賀市)
            Luciola lateralis MOTSCHULSKY, 1874ヘイケボタル
                本州型ヘイケボタル (神奈川県横須賀市)
                北海道型ヘイケボタル(北海道釧路湿原)
            Luciola kuroiwae MATSUMURA,1918クロイワボタル(沖縄県那覇市)
            Luciola yayeyamana MATSUMURA,1918ヤエヤマボタル(沖縄県石坦島)
        Hotaria ヒメボタル属
            Hotaria parvula (KIESENWETTER),1874 ヒメボタル
                大型ヒメボタル(愛知県名古屋市)
                小型ヒメボタル(岡山県哲多町)
            Hotaria tsushimana NAKANE,1970ツシマヒメボタル(長崎県対馬)
        Curtosスジボタル属
            Curtos costipennis (GORHAM),1880 キイロスジボ夕ル(沖縄県宮古島)
            Curtos okinawana MATSUMURA, 1928オキナワスジボタル(沖縄県那覇市)
    Lampyrinaeオバボタル亜科
        Pyrocoelia マドボタル属
```

 Pyrocoelia atripennis LEWIS, 1896 オオシママドボタル (沛縄県石垣島)

結 果

日本産ホタル雄の探雌飛翔時における発光軌跡とコン ピュータ解析方法により得られた発光パターンおよび発光パターンのパワースペクトルを各々第1，2，3脳に示した。

ゲンジボタル：第 1 冎 -1 は熊本県旭志村において，典型的な西日本型ゲンジボタル雄の探雌飛翔時の発光の様子を撮影したものである。この発光パターンをコンピ ュータ解析した結果，気温 $22^{\circ} \mathrm{C}$ において，発光間隔は約 2 秒，発光時間約 1 秒，消光時間約 0.5 秒であった（第 2図－1）。一方，神奈川県横須賀市における東日本型 ゲンジボタルの飛翔発光軌跡は第 1 図－ 2 の通りであり，気温 $20^{\circ} \mathrm{C}$ の時に発光間隔約 5 秒，発光時間 4 秒，消光時間約1．5秒で著しく間延びした発光パターンであった （第2 -2 ）。東日本型，西日本型の発光パターンは共 に庄右対称的な波形をしているが，発光のピークに達す るまでの立ち上がり時間が東日本型では約 2 秒かかって いるのに対し西日本型では約 1 秒と短く，両者の発光パ ターンは単に発光の間隔が異なっているだけではない。各々の発光パターンのパワースペクトルは第 3 脳 -1 ，

2 に示した通りであり，東日本型では波形の周波数成分 は約 0.1 から 0.2 Hz のところにかけてゆるやかなピーク がみられ，西日本型では約 0.5 Hz のところにピークが みられた。

ヘイケボタル：本州型ヘイケボタル雄の探雌飛翔時 （気温 $24^{\circ} \mathrm{C}$ ）における発光軌跡は第 1 図 -3 の通りであ り，発光間隔は約 0.5 秒，発光時間約 0.4 秒，消光時間約 0.1 秒であった（第2図－3）。一方北海道型ヘイケボタ ルでは各々約 1 秒，約 0.8 秒，約 0.2 秒（気温 $17^{\circ} \mathrm{C}$ ）であ った（第2図－4）。発光開始時間は発光波形が急激に立 ち上がるので明暸であるが，終了時間は次第に減衰する ので，不明暸であった。目視観察によれば，発光ピーク時から少し外れると急激に発光が弱くなるので，消光時間がみかけ上からより長く測定された。

横須賀市産の本州型へイケボタルの雄の静止発光行動時の発光パターンを光電子増倍管を用いて解析した結果，気温 $24^{\circ} \mathrm{C}$ において，発光間隔は約 0.5 秒であり， 1 つの発光波形に2つのピークと痕跡のショルダーピークが認 められた（第 $2 \mid$ 壮 -5 ）。この結果から 1 つの発光波形に明暸な 3 つのピークを有しているのが確認された。それ ぞれのピークは約 0.2 秒以下の発光間隔で 1 つの波形が

第1図日本産ホタルの雄成虫の飛翔発光軌跡。
1．西日本型ゲンジボタル，2．東日本型ゲンジボタル，3．本州型ヘイケボタル，4．大型ヒメボタル， 5．クロイワボタル，6．ヤエヤマボタル（ヤエヤマヒメボタル），7．キイロスジボタル，8．オキナワス ジボタル

形成されていた。
本州型と北海道型の発光パターンのパワースペクトル は第 3 図－ 3 ， 4 に示す。本州型は，パワースペクトル に3つ周波数成分が見られたが， 1.8 Hz のところに主 ピークがあり，北海道型では 1 Hz のところに主ピーク があった。

ヒメボタル：大型ヒメボタル雄の探雌行動時（気温 $\left.18^{\circ} \mathrm{C}\right)$ における飛翔軌跡は第 1 図 -4 の通りであり，発光間隔は約 1 秒，発光時問約 0.3 秒以下（テーリングして いるので不明瞭），消光時間約0．7秒であった（第2－6

関）。一方，小型ヒメボタルでは各々，約 0.6 秒， 0.3 秒以下（気温 $21^{\circ} \mathrm{C}$ ）であり，大型のヒメボタルに比較して著しく短い明滅間隔であっ（第2悩 -7 ）。両型の発光パ ターンのパワースペクトルは第 3 図－5，6に示した通 りで，共に 3 つの波形成分が見られたが，主ピークはそ れぞれ $1 \mathrm{~Hz}, ~ 2 \mathrm{~Hz}$ のところにあった。第 2 㒺 -8 は，大型ヒメボタルの雄と雌の発光コミュニケーションを記録解析した結果である。雄雌は約 5 cm の距離にあり，雄が発光すると雌が約0．3秒後に応答発光した（気温 $25^{\circ} \mathrm{C}$ ）。

ッシマヒメボタル：長崎県の対馬にだけ生息する固有種で，雄成虫は探雌飛翔時において，人型のヒメボタル に酷似したパターンで発光し，発光間隔もほぼ間じであ った。第 2 図－ 9 はこのホタルの発光を光䉓子増倍管で取り込んだもので，パルス状の光の中にさらに短い明蔵 がみられた。

クロイワボタル：雄の探雌飛翔時（気温 $26^{\circ} \mathrm{C}$ ）におけ る発光軌跡は第 1 脳 -5 の通りであり，発光間䰙は約 1.2 秒，発光時間約 0.25 秒，消光時間は約 0.85 秒であっ た（第 2 図－10）。発光時間は 0.2 秒以下のきわめてシ ャープな波形であった。1 つの発光波形に2つのピーク が含まれることもあり，そのピークは0．1秒以下であっ

た。発光パターンのパワースペクトルは第 $3-7$ 间に示 した通りで， 3 つのピークが含まれていたが，主ピーク は 1 Hz のところに見られた。

ヤエヤマボタル：石垣島と西表島の八重山諸島に生息 しており，雄の形態はヒメボタルによく似ている。雄の探雌飛翔時における発光軌跡は第 1 図 -6 の通りで，地上 50 cm を平面的に飛翔し，気温 $26^{\circ} \mathrm{C}$ に抽ける発光間隔 は約 0.2 秒，発光時問は0．2秒以下，消光時間は測定不能 であった（第2 2 汶－11）。発光パターンのパワースペクト ルは第 3 図－8 に示した通りで，きわめてシャープな単一成分から形成されていた。
キイロスジボタル： $26^{\circ} \mathrm{C}$ における雄の探雌飛翔時の

第2図日本産ホタル雄成虫のコンピュータ解析法による発光パターン。
1．西日本型ゲンジボタル，2．東日本型ゲンジボタル，3．本州型ヘイケボタル，4．北海道型ヘイケボタル，5．静止発光中のヘイケボタル，6．人型ヒメボタル，7．小型ヒメボタル，8． ヒメボタルの発光交信。上段は雄，下段が雌であり，雄の発光の值後に一定のタイミングで雌は雄に応答発光している，9．ツシマヒメボタル，10．クロイワボタル，11．ヤエヤマボタル（ヤエ ヤマヒメボタル），12．キイロスジボタル，13．オキナワスジボタル，14．オオシママドボタル

第3図日本産ホタルの発光パターンのパワースペクトル。
1．西日本型ゲンジボタル，2．東日本型ゲンジボタル，3．本州型ヘイケボタル．4．北海道型ヘイケボタル，5．大型ヒメボタル，6．小型ヒメボタル，7．クロイワボタル，8．ヤエヤ マボタル（ヤエヤマヒメボタル）

発光軌跡は第1図－7の通りであり，強弱があるものの消光しない発光パターンであった（第2図—12）。

オキナワスジボタル： $25^{\circ} \mathrm{C}$ における雄の探雌飛翔時 の発光軌跡は第 1 図 -8 の通りであり，持続した発光で あった（第2㒺－13）

オオシママドボタル： $27^{\circ} \mathrm{C}$ における雄の探雌飛翔時

における発光軌跡はキイロスジボタルと同様に持続光を放ったが，より強い光を放った（第2㒺－14）。

考 察

発光パターン：本発光パターン解析法により得られた ホタルの発光パターンはこれまでの解析方法による結果

と一致し，分解能が向上して精度が高くなった。このこ とにより，既に萻樻されているホタルの発光衍動の映像 データの精度高い再解析を可能とし，今後の発光パター ン解析に飛躍的な進展が期待できる。またコンピュータ に取り込まれた発光パターンのデータはファイル化によ り時間軸などの条件設定を変えて，様々な視点からの再解析を容易にした点で従来にない独自な発光パターン解析が行える。

ゲンジボタルは北海道と沖縄を除く全国各地に生息し ているが，中部山岳地带を境として東西で発光の問谳が異なっており，西日本型および東日本型の二型が認識ぎ れている（OHBA，1984）。また，これら二型は分布域や発光パターンの差異だけではなく，雌の産卵䘕動やアロ ザイムからみた集団の遺伝的な組成も異なっていること が認識されている（大場，1986，1988，1989，1991；佐藤ほか，1990）。ヘイケボタルは沖縄を除く全国各地か らシベリアにまで生息しているが，本州産のヘイケボタ ルは羽化年数が 1 年であるのに対して，北海道産のもの は2年以上を要し，飛翔しながら明滅する頻度も本州産 に比べて少なく，寒冷地適応した生活史をとっている （大場ほか，1993）。本州型へイケボタルは北海道型へイ ケボタルの発光パターンやスペクトル解析の結果と比較 しても明らかに短周期型であり，両者は発光間隔や生活型の違いだけではなく集団の遺伝的な組成も異なってい ることが示唆されている（鈴木ほか，1993，1994）。ヒメ ボタルは北海道と沖縄を除く全国各地に生息しているが体長の異なる大小の二型が存在している（大場，1983， 1986）。大型の集団は日本各地に見られるが小型の集団 は神奈川県箱根以西でしか分布か確認されていない。箱根においては，噤高 700 m から 800 m を境として上の方 に大型，下の方に小型のヒメボタルが棲み分けており， しかも小型の発光䦎隔は大型のそれよりも速い。これら の二型もゲンジボタルやヘイケボタルと同様に遺伝的な分化を遂げていることが確認されている（鈴木ほか， 1991，SUZUKI et al．，1993）。ツシマヒメボタルの雄の発光ではパルス状の光の中にさらに短い明滅がみられた が，この実態を明らかにするために，今後ビデオ画面か らではなく野外個体の発光を直接光電子増倍管で測定す る必要がある。クロイワボタルは沖縄本鳥に生息してい るホタルで，ヒメボタル同様にパルス状の閃光を放つが， ヒメボタルとはパルスの形状がやや異なり尾を引かない左右対称型である。ヤエヤマボタルの閃光は緩やかな波 の上に重ね合わせた形になっているが，これはビデオ映像においてホタルの飛翔移動に伴い撮影距離が変化した ことによる。飛翔発光するキイロスジボタル，オキナワ

スジボタル，オオシママドボタルの各雄は持続光を放ち，特異的波形成分は認められない。
波形表示分解能：モニター映像から発光シグナルをコ ンピュータに取り込む際に，ノイズが多い映像には CdS セル，少ないときには光電子増倍管を選択するこ とによって，最適な分解能を持った波形を表示できる。 また，発光間隔の短い発光パターンの解析には分解能が要求されるので，光電子増倍管がセンサーとしてより適切である。

2 個体以上の相互関係の解析：モニター上の光シグナ ルを2つのセンサーで追從してコンピュータに取り込む ことによって，同時に 2 個体の発光シグナルの人力が可能であるが，モニター画面上で同時に 2 個体の発光軌跡 をセンサーで追従することが凩難なことが多い。そこで， 1 つのセンサーでも，トリガーを設定しデータ取り込み のタイミングを合わせることによって，1㑬体づつコン ピュータに取り込んだ波形を同時表示することが可能と なり， 2 個体以上の相方関係を解析することができる。 ヒメボタルの雄成虫が発光すると訿は約 0.3 秒後に応答発光することは，これまでの結果と一致するが（OHBA， 1983；大場，1986），今回の方法により再確認された。 このシステムの構築により，ゲンジボ夕ルをはじめとす る集団同時明滅するホタルの発光行動様式を解明する上 で大きな成果が期街できる。
発光パターンのパワースペクトル：クロイワボタルの雄の探雌飛翔時における発光パターンのパワースペクト ルには3つの波形成分が含まれる例があるので，発光コ ミュニケーションを行う1でもこうした波形成分が重要 な役割を果たしている可能性がある。同様なことは大型 のヒメボタルにおいても認められる。こうした波形成分 は目視観察では確認できないものである。ヤエヤマボタ ル雄の探雌飛翔時の発光パターンのパワースペクトルは単一の波形成分から形成され，比較的一定の発光パター ンであることを示している。またオオシマドボタル，ミ ヤコマドボタル，アキマドボタル，オキナワマドボタル などでは明墄しない持続した光を放つので発光パターン のスペクトル解析は出来ない。

まとめ

1．本発光パターン解析方法により得られた日本産ホタ ルの発光パターンはこれまでの解析方法の結果と一致し たが，より分解能が向上して精度が高くなった。
2．コンピュータに取り込まれた発光パターンのデータ はファイル化により時間軸などの条件設定を変化させる ことが浴易となり，これまで㢣積された発光パターンの

映像の再解析を可能とした。
3．モニター映像から発光シグナルをコンピュータに取 り込む時に，センサーとして CdS セル，光電子増倍管 を使い分けることによって，センサー分解能を変えた波形を得ることが出来た。ノイズが多いときにはCdSt ル，少ないときには光電子倍増管が適する。
4．2つのセンサーを用意することによって，同時に2個体の発光シグナルの入力が可能である。また，トリ ガーを設定することによって 1 個体づつ入力した後に， これらの波形を同時に表示することが可能となった。
5．クロイワボタルの雄の探雌行動おける発光パターン のパワースペクトルには3つのピークがあり， 3 つの波形成分が含まれる例が認められた。
6．大型ヒメボタルでは波形成分が 3 つから形成される例があった。こうした成分は目視観察では確認できなか ったものである。
7．今回得られたヤエヤマボタル雄の探雌飛翔時の発光 パターンのパワースペクトルは単一の波形成分から形成 されていた。
8．飛翔発光するキイロスジボタル，オキナワスジボタ ル，オオシママドボタルの各雄は持続光を放った。

文 献

牧野 徹•鈴木浩文•大場信義 1994．パーソナルコン ピュータによるホタル発光パターンの解析システム。横須賀市博研報（自然），（42）：27－56．
大場信義 1979．数種の日本産ホタル類の発光パターン と習性．横須賀市博研報（自然），（26）：21－30，pls． 6－7．
大場信義 1983．神奈川県におけるホタルの生息状況．横須賀市博館報，（29）：17－19．
OHBA N．1983．Studies on the communication sys－ tem of Japanese fireflies．Sci．Rept．Yokosuka City

Mus．，（30）：1－62，pls．1－6．
OHBA N．1984．Synchronous flashing in the Japa－ nese firefly，Luciola cruciata（Coleoptera：Lampy－ ridae）．Sci．Rept．Yokosuka City Mus．，（32）：23－33，pls． 1－8．
大場信義 1985．発光シグナルの記録とその解析法．植物防疫， $\mathbf{3 9}$（9）：46－51．
大場信義 1986．ホタルのコミュニケーション．東海大学出版会。
大場信義 1988．ゲンジボタル．文一総合出版。
大場信義 1989．西と東で異なるゲンジボタル，昆虫と自然， 24 （8）：2－6．
大場信義 1991．ゲンジボタルの遺伝子東西で異なる．遺伝， 45 （ 10 ）：8－9．
大場信義•圓谷哲男•本多和彦•田村省平•大森雄治 1993．北海道釧路湿原と厚岸のヘイケボタルの生態。横須賀市博研報（自然），（41）：15－26．
佐藤安志•鈴木浩文•藤山静雄•大場信義 1991．ゲン ジボタル地域集団における遺伝的変異．全国ホタル研究会誌，（24）：13－14．
鈴木浩文•佐藤安志•藤山静雄•大場信義 1991．ヒメ ボタル二型の遺伝的分化．全国ホタル研究会誌， （24）：11－12．
鈴木浩文•佐藤安志•大場信義 1993．釧路湿原のヘイ ケボタル．全国ホタル研究会誌，（26）：19－20．
鈴木浩文•佐藤安志•大場信義 1994．ヘイケボタルの地理的分化．全国ホタル研究会誌，（27）：23－25．
SUZUKI H．，SATÔ Y．，FUJIYAMA S．and OHBA N． 1993．Genetic differentiation between ecological two types of the Japanese firefly，Hotaria paroula：An electrophoretic analysis of allozymes．Zool．Sci．，10： 697－703．

[^0]: ＊横須賀市自然博物館 Yokosuka City Museum，Yokosuka 238.
 ＊＊東京都立大学理学部自然史講座 Dept．Natural History，Faculty Sci．，Tokyo Metropolitan University， Hachioji，Tokyo 192－03．
 原稿受付 1995年8月30日 横須賀市自然博物館業續 第474号。
 キーワード：ホタル科，日本産ホタル，発光パターン，コンピュータ解析 Key words：Lampyridae，Japanese firefly，luminescent pattern，computer analysis

