ゲンジボタルの形態と発光パターンの地理的変異

大場信義＊

Geographical variation，morphology and flash pattern of the firefly，Luciola cruciata（Coleoptera：Lampyridae）

OHBA Nobuyoshi＊

キーワード：ゲンジボタル，ホタル，発光パターン，地理的変異，生活史
Key words：Luciola cruciata，firefly，flash pattern，geographycal variation，life cycle

日本各地のゲンジボタル集団の形態•発光パターンと生態などを調査した結果，東日本の集団 は探雌飛翔時における雄の発光間隔は約 4 秒もしくはそれより長く，一方，西日本の集団は約 2秒と速く明滅し，中部日本では東西日本の中間的な発光パターンが確認され，さらにそれらには各地域集団固有な地理的変異が認められた。また，遺伝的な背景と発光パターンを対比した結果，西日本型と東日本型，さらに中部日本型とはよく対応したが，その他の集団では明瞭な対応が認 められなかった。しかしなからら，北九州の集団，特に対馬の集団は遺伝的背景を反映し，最も明滅周期が速いパターンを示した。さらに，発光パターンや遺伝的な背景が各地の集団の外部形態に反映されているか否かを調査した結果，集団内の個体変異が大きく，明膫な連関が認められなかっ た。しかし，色彩斑紋パターンは関東地方以北に薄紋型が多くなり，東日本型の遺伝的特性を反映していると考えられる。

The most famous Japanese firefly，Luciola cruciata is widely distributed in Japan with out Hokkaido and Okinawa．Ohba finds that in the population in northern Japan the synchronous flashing period of the searching male is longer than in western Japan．The individuals often take more than one year to reach maturity．However， in the western population the males＇flash interval is about 2 seconds，and the life cycle is usually completed in more than one year．In northern population the males＇flash interval is about 4 seconds．The border area of distribution of the both types is near Tajimi City（Gifu Prefecture），Toyohasi City（Aichi Prefecture），Tatuno Town，Tino City（ Nagano Prefecture），and Kosiji Town and Nagaoka City（Niigata Prefecture）．Near the border areas，another type of population is recorded．The males＇flash interval is about 3 seconds．While at Yamaga City（Kumamoto Prefecture ）and Tikugo City（Fukuoka Prefecture）in Kyushu，there are similar types of the 3 second－type population recorded in this study．However they are more well－

[^0]synchronized flashing．Based on morphological study in each population，I could not distinguished any relationship between flash pattern and morphology（color pattern of the pronotum ）．However，the mor－ phology and color pattern is specific to each population．

はじめに

ゲンジボタル Luciola cruciata は探雌飛翔時 における雄の発光間隔が約 2 秒と約 4 秒の 2 つの集団が東日本と西日本に生息する（OHBA，1983； 1984，大場，1984，1986，1988）。また，これ らの両集団の分布境界域には約 3 秒の中間型の存在が確認された。これらの実態を明らかにす るために各地域集団のアロザイム解析の分析を行い（SUZUK̇I et al．，1996），2つの西日本と東日本の生態型に分かれることが明らかになり，こ れら2型は発光パターンを反映している結果が得られている。その後，さらに詳細に全国各地の ゲンジボタル集団についてミトコンドリアDNA の解析を進め，6つのハプロタイプが存在した （鈴木ほか，2000）。しかし，各地集団の形態や発光パターンの解析と比較検討は十分でなかっ た。

そこで著者は更に多くのゲンジボタル集団に ついて雄の飛翔探雌時における発光パターン解析を行い生態•行動•生息環境•外部形態や斑紋色彩パターンとの関連を分析した。発光パター ンは行動状態•気温•時刻などの要因により変動 することが報告されてきた（OHBA，1980，1983；大場，1986，）が，さらに詳細な解析を行うとと もに，波形の相違や発光パターンの変動要因につ いても触れ，地域集団の固有性を明らかにすると ともに，本種の分布拡散経路の推定を行ったので報告する。

本研究を進めるにあたり以下の各位に調査の協力や資料の提供を頂いた。ここに記して深謝 する。渡辺和玉•鈴木浩文•佐藤安志•圓谷哲男•中川七三郎•竹崎深江•竹林国興•岩崎郁男•甲斐睦央•新名誠一•江里口厳•勝野重美•大久保重雄•斉藤正二•緒方隆雄•山田勝彦•稲葉辰馬•小林 修•関谷寛隆•吉田嗣朗•西川幸孝•岩井

立弥•丸岡文夫 \cdot 大竹和夫 \cdot 三石暉弥•内藤喜照•西原昇吾•城田安幸•臼沢良一•小野寺寛一•細越武光•淀江賢一郎•恩田 寛•中村光男•斎藤秀生•松田マチ子•遊磨正秀•上野武次•大場詔子•全国ホタル研究会会員諸氏。本研究の一部，文部省科学研究費基盤研究C（No．09640832）お よび国際学術研究（No．09041100）とトヨ夕財団研究助成によっている。

対象と調査地

ゲンジボタルの全国各地の集団について，発光行動と生息環境を調査するとともに，横須賀市自然博物館に保管されている全国各地のゲンジ ボタルの乾燥標本（横須賀市博物館昆虫資料）に ついて前胸背板の幅および長さを計測した。ま た，それらの集団の一部については，生息状況や環境を詳細に調査するとともに，雄の飛翔探雌行動時における発光パターンを調査した。特に，神奈川県横須賀市の集団を対象とし，発光パター ンの経時的変化やコミュニケーション・システ ムの観察も行い，他の集団との比較を行った。各地の発光行動と気温，生活史などについても，こ れまでの知見（OHBA，1983ほか）に加え，新た に発光パターン解析を行った結果と比較し，西日本と東日本型ゲンジボタルの生態の特徴を明ら かにした。

発光パターンの解析を行ったいくつかの集団 の生息環境を第19図に示す。前胸背板の大きさ の計測はニコン万能投影機（V－12）により50倍 に拡大して行った。発光パターンの記録解析は スターライトスコープ（Hamamatsu TV）を装着したVTRカメラ（Sony Handycam EVCX10）で発光パターンを野外で録画後（大場， 1985），再生映像からコンピュータによる解析 （牧野ほか，1994）を行った。

第1図 全国各地のゲンジボタルの外部形態と色彩斑紋パターン。
1．熊本県旭志村，2．熊本県旭志村（ㅇ⼗），3．熊本県阿蘇町，4．熊本県阿蘇町（ㅇ $) ~, ~ 5$ 熊本県山鹿市，6．熊本県人吉市，7．福岡県筑後市舟小屋，8．大分県飯田町，9．大分県飯田町（早），10。宮崎県北川11。鹿児島県薩摩郡入来町，12．長崎県対馬厳原，13．香川県塩江町，14．高知県大野見村（ σ^{7} ），15．高知県大野見村（우）。

第1図 全国各地のゲンジボタルの外部形態と色彩斑紋パターン。
16．山口県豊田町，17．山口県山口市，18．島根県隠岐，19．岡山県哲多町，20．京都府清滝川（ フ），21．京都府清滝川（우）， $22 \sim 23$ 。長野県松本市，24．長野県石ノ湯，25．長野県辰野町，26．岐阜県多治見市，27．岐阜県多治見市（우），28．山梨県清里，29．山梨県下部町，30．神奈川県秦野市．

第1図 全国各地のゲンジボタルの外部形態と色彩斑紋パターン。
31．神奈川県秦野市，32．神奈川県秦野市（우），33．神奈川県横浜市舞岡，34．神奈川県舞岡（우），35．神奈川県逗子市池子，36．神奈川県横須賀市山中町， $37 \sim 38$ 。神奈川県横須賀市野比，39．神奈川県横須賀市野比鏡田谷戸，40．神奈川県厚木市，41．群馬県吾妻郡東村，42．山形県湯瀬町，43．山形県米沢市小野川，44．山形県米沢市小野川（우），45．宮城県東和町。

第1図 全国各地のゲンジボタルの外部形態と色彩斑紋パターン。 46．宮城県東和町，47．宮城県東和町（古），48．青森県青森市，49～50．青森県弘前市．

結 果

各地のゲンジボタルの色彩斑紋パターン

横須賀市自然博物館に所蔵されている全国各地のゲンジボタル乾燥標本のなかから，各地域の特徴を示すと推定された資料を50個体（第1図）選択し，前胸背の色彩斑紋パターンを観察した結果は以下の通りである。熊本県旭志村：錨紋型で前方が広がり，縦条は太い，熊本県旭志村（古）：山の字型で中央の縦条は細い。熊本県阿蘇町：錨紋型。熊本県阿蘇町（우）：十字紋型で後方左右 に小薄䋌，熊本県山鹿市：阿蘇町の우と同様。熊本県人吉市：太い錨紋型。福岡県筑後市舟小屋：錨紋型。大分県飯田町：十字紋型，大分県飯田町 （오）：細い縦条の中央前寄りに小逆三角形の斑紋。宮崎県北川町：十字紋型であるが，中央の紋 は薄い。鹿児島県薩摩郡入来町：太い錨紋型で中央前寄りの紋は丸くひろがる。長崎県対馬厳原：山の字型で前方は半円に広がった大紋となり，境界は不明瞭。香川県塩江町：十字紋型で後方に細 く薄い横紋がある。高知県大野見村：錨紋型，高知県大野見村（古）：十字紋型。16．山口県豊田町：十字紋型で後縁両側に薄し小紋がある。山口県山口市：十字紋型，島根県隠岐：十字紋型。岡山県

哲多町：錨紋型であるが，後方の紋は細く薄い。京都府清滝川：十字紋型，京都府清滝川（早）：十字紋型であるが後縁に 1 対の薄い小紋がある。長野県松本市：十字紋型であるが，中央の紋は菱型，他の個体では十字紋型で後縁に一の字の紋が ある，長野県石ノ湯：十字紋型であるが，後方に一対の薄い小紋がある。長野県辰野町：十字紋型 であるが後縁に一の字型の紋がある，岐阜県多治見市：太い錨紋型。岐阜県多治見市（古）：錨紋型であるが，中央の縦条は太く，中央では丸く広 がる。山梨県清里：十字紋型であるが中央の紋は逆三角形。山梨県下部町：山の字型で縦条は前縁 に達していない。神奈川県秦野市：個体変異大き い。前縁に痕跡的な十字紋があり，縦条は中央で途切れる。別の個体では縦条が細く，中央では薄 く小さい逆三角形を呈している。神奈川県秦野市 （古）：中央縦条は細し。中央には一対の小斑紋が ある。神奈川県横浜市舞岡：山の字型。神奈川県横浜市舞岡（古）：細い十字紋型。神奈川県逗子市池子：前方が広がり，後方には一対の小紋があ る。神奈川県横須賀市山中町：縦条は細く，中央 にハート型の小紋がある。神奈川県横須賀市野比：薄い十字紋型。十字紋型であるが，縦条は細 く痕跡的。後縁に一対の痕跡的紋がある。神奈川県横須賀市野比鏡田谷戸：同前。神奈川県厚木

市：細い痕跡的な縱線がある。群馬県吾妻郡東村：無紋型。山形県湯瀬町：無紋型。山形県米沢市小野川：十字紋型。山形県米沢市小野川（ $~$ 克）：十字紋型であるが縦条は細く中央斑紋は逆三角形。宮城県東和町：十文字型で後縁に一字型の紋 がある。他個体は同じ斑紋であるが薄い。宮城県東和町（우）：無紋型。 青森県青森市（ $~$ ）：無紋型，青森県弘前市：個体変異大きい。1）痕跡型，2）前縁小紋型，3）十文字型で後方に一対の小紋がある，4）前縁から中央にかけて細い縦線が あり，左右中央に小紋がある。

外部形態

全国各地のゲンジボタル乾燥標本について前胸背板の幅（PW）•長さ（PL）•体長（BL）•体幅（BW）•上翅長（EL）•頭幅（HW）•複眼幅 （CW）の計測結果を第1表に示す。

雄：測定値中でPWが最小であるのは2．93 mm の神奈川県逗子市の集団であり，最大であるのは 4.13 mm の山梨県下部町の個体である。大型の PW は小型のPW の約 1.4 倍である。PL の最大値は山形県湯瀬の 2.34 mm ，最小値は横浜市舞岡の 1.63 mm である。EL の最大値は群馬県東村の 11.77 mm ，最小値は横浜市舞岡の 9.16 mm であり，大型は小型の 1.3 倍である。BLの最大値は群馬県東村の 14.6 mm ，最小値神奈川県逗子市の 10.69 mm である。
雌：測定値中でPWが最も小型であるのは3．82 mm で山梨県清里の個体であり，最も大型である のは 5.21 mm の宮城県東和町の個体である。大型の PW は小型の PW の約 1.4 倍である。PLの最大値は神奈川県厚木市の 3.06 mm ，最小値は高知県大野見村の 2.03 mm である。EL の最大値 は神奈川県秦野市の 15.39 mm ，最小値は京都市

第1表 ゲンジボタル各地個体の体の大きさ。
体長•体幅•上翅長•前胸背長•前胸背幅•頭幅•複眼幅の計測値単位は mm ．

性	探集地	体長（BL）	体幅（BW）	上翅長（EL）	前胸長（PL）	前胸幅（PW）	頭幅（HW）	複眼幅（CW）	BW／BL	PW／EL	PL／PW	CW／HW
0^{7}	福岡県舟小屋19940601	14.124	4.737	10.742	2.100	4.054	2.440	0.843	0.335	0.377	0.518	0.345
0°	能本県1廹志村0531		5.255	11.488	2.069	3.887				0.338	0.532	
0^{7}	能本県旭志村19870605	12.245	4.811	10.298	1.935	3.664			0.393	0.356	0.528	
\checkmark	熊本県山鹿市19890529	12.386	5.282	10.094	2.100	3.649			0.426	0.362	0.576	
0	熊本県阿蘇町19870604	14.521	5.261	11.042	2.133	4.086		0.948	0.362	0.370	0.522	
\checkmark	大分県飯田町19860705	13.312	4.190	10.527	2.151	3.579			0.315	0.340	0.601	
－	鹿児島県入来町19800606	12.315	4.449	9.994	1.953	3.580			0.361	0.358	0.546	
－	山口県山口市	13.264	5.221	10.847	1.978	4.024			0.394	0.371	0.492	
\square^{1}	山口県豊田町19760528		4.816	10.731	2.135	3.853				0.359	0.554	
0	島根県隠岥19910625		4.135	9.236	1.790	3.257				0.353	0.550	
万	岡山県哲多町19980616		4.611	10.604	1.962	3.768				0.355	0.521	
0	高知県大野見村19870707	12.081	4.372	9.790	1.773	3.330			0.362	0.340	0.532	
入	高知県大野見村19870707	12.081	4.372	9.790	1.773	3.330			0.362	0.340	0.532	
0^{7}	香川県塩江町19900524	12.193	5.055	10.538	1.695	3.800			0.415	0.361	0.446	
\％	長野県松本市19910628	12.511	4.512		2.099	3.695			0.361		0.568	
\％	長野県辰野町19830704		5.057	10.717	1.887	3.862				0.360	0.489	
\bigcirc	長野県松本市19900703		5.081	10.539	1.884	3.682				0.349	0.512	
8	長野県石の湯19860906	12.278	5.551	10.305	1.960	3.662			0.452	0.355	0.535	
σ	山梨県下部町19860627	14.048	4.865	11.527	2.338	4.129			0.346	0.358	0.566	
σ^{7}	神奈川県秦野市19800604	12.239	4.775	9.768	1.966	3.574	2.507	0.811	0.390	0.366	0.550	0.323
07	神奈川県秦野市19800604	13.708	4.470	10.660	2.265	3.615	2.589	0.844	0.326	0.339	0.627	0.326
σ^{6}	横浜市舞岡19830616	11.008	4.033	9.160	1.632	3.241			0.366	0.354	0.504	
8	神奈川県逗子市19920618	10.692	3.941		1.867	2.932			0.369		0.637	
8	横須賀市山中町19830607	12.656	4.379	9.994	1.801	3.453	2.321	0.737	0.346	0.346	0.522	0.318
8	群馬県東村19860701	14.643	5.099	11.773	2.273	3.962	2.585	0.935	0.348	0.337	0.574	0.362
0^{7}	山形県米沢市19850713	14.220	4.754	10.994	2.067	3.808			0.334	0.346	0.543	
8	山形県湯澋町19860718	14.374	5.254	11.519	2.344	3.888			0.366	0.338	0.603	
－	宮城県東和町19850709	12.606	3.760	10.022	2.006	3.290	2.119	0.629	0.298	0.328	0.610	0.297
σ^{7}	宮城県東和町19850709	12.161	3.896	9.277	1.973	3.163	2.311	0.778	0.320	0.341	0.624	0.337
	平均値	12.855	4.689	10.444	1.997	3.649	2.410	0.816	0.363	0.352	0.549	0.330
	最大値	14.643	5.551	11.773	2.344	4.129	2.589	0.948	0.452	0.377	0.637	0.362
	最小値	10.692	3.760	9.160	1.632	2.932	2.119	0.629	0.298	0.328	0.446	0.297
	標準偏差	1.093	0.481	0.704	0.184	0.302	0.171	0.104	0.037	0.012	0.045	0.021
	数値数	23	29	27	29	29	7	8	23	27	29	7

무	大分県飯田町19860705	16.705	6.514	13.276	2.961	5.001			0.390	0.377	0.592	0.324
우	熊本県旭志村19870605	16.987	6.706	14.961	2.467	5.106			0.395	0.341	0.483	
우	熊本県阿蘇町19870604	14.841	6.015	12.803	2.381	4.598			0.405	0.359	0.518	0.303
우	高知県大野見村19870707	14.265	5.082	12.246	2.033	4.344			0.356	0.355	0.468	0.399
우	高知県大野見村19870707	14.265	5.082	12.246	2.033	4.344			0.356	0.355	0.468	
우	京都市清滝川19830627	13.879	5.082	10.553	2.221	4.286	2.343	0.760	0.366	0.406	0.518	0.305
우	山梨県清里19820620	13.984	4.947	11.108	2.301	3.815			0.354	0.343	0.603	
우	神奈川県秦野市19800604		5.837	15.393	2.439	4.548	2.373	0.720		0.295	0.536	
우	神奈川県秦野市19800604	14.280	5.648	11.589		4.062	2.370	0.945	0.396	0.351	0.000	
우	横浜市舞岡19830616	14.005	5.447	11.782	2.304	4.160			0.389	0.353	0.554	
앙	横須賀市山中町19830607	14.726	5.752	11.912	2.334	4.439	2.297	0.701	0.391	0.373	0.526	
우	神奈川県厚木市19840630		6.598	13.911	3.056	5.129				0.369	0.596	
웅	東京都19560623	15.911	6.448	13.070	2.818	4.617			0.405	0.353	0.610	0.333
우	山形県米沢市19850713	14.336	5.650	12.097	2.374	4.154			0.394	0.343	0.571	0.398
우	宮城県東和町19850709		7.140	14.231	2.780	5.210				0.366	0.534	0.305
우	青森県浅虫19900821	14.197	5.430		2.183	4.307			0.382		0.507	0.317
	平均値	14.799	5.836	12.745	2.446	4.508	2.346	0.782	0.383	0.356	0.505	0.336
	最大値	16.987	7.140	15.393	3.056	5.210	2.373	0.945	0.405	0.406	0.610	0.399
	最小値	13.879	4.947	10.553	2.033	3.815	2.297	0.701	0.354	0.295	0.000	0.303
	標準偏差	1.050	0.673	1.395	0.318	0.414	0.035	0.112	0.019	0.024	0.142	0.040
	数値数	13	16	15	15	16	4	4	13	15	16	8

우奇形 熊本県旭志村19850528	14.38
오奇形 神奈川県横浜市 19830616	11.292

清滝川の 10.55 mm であり，大型は小型の 1.5 倍 である。BL の最大値は熊本県旭志村の 16.99 mm ，最小値は京都市清滝川の 13.88 mm であ り，大型は小型の 1.2 倍である。各地の雌の前胸背幅と長さの関係を第6図に示す。また，17地点のゲンジボタル雌個体の前胸背幅を第7図に示す。各地域ごとに変異が大きく，全体として各地の明膫な差異は認められない。

第2図 各地のゲンジボタル雄の大きさ。

各地の雄個体の前胸背幅と長さを第2図に示 した。また各生息地別に前胸背の幅を第5図に示した。

次に福岡県•熊本県•長崎県•宮崎県•鹿児島

県•新潟県•岐阜県•神奈川県•青森県の各地域集団の雄（各 $3 \sim 27$ 個体）について前胸背幅 （PW）と前胸長（PL）を計測した結果を第2表に示す。各地域集団のPWおよびPLの最大•最小•平均値を以下に参考までに示した。

測定個体数が一定でないので，変異幅は同じよ うに比較できないが，大きい個体と小さい個体と では 1.5 倍ほどの相違が認められる。雌のPL／ PWは雄よりも明かに低い値を示し，前胸背板が雄よりも大型かつ横長である。

福岡県北九州市：PWの最大値が 4.18 mm ，最小値が 2.78 mm であり，大型は小型の約 1.5 倍 である。PLの最大値が 2.46 mm ，最小値が 1.63 mm であり，大型は小型の約1．5倍である。PW の平均値は 3.45 mm ，PLは 1.97 mm ， $\mathrm{PL} / \mathrm{PW}$ は0．57（n＝24）である。

長崎県対馬：PW の最大値が 3.90 mm ，最小値が 2.53 mm であり，大型は小型の約 1.5 倍で ある。PL の最大値が 2.26 mm ，最小値が 1.51 mm であり，大型は小型の約 1.5 倍である。PW の平均値は 3.16 mm ，PL は 1.84 mm ， $\mathrm{PL} / \mathrm{PW}$ は $0.58 \mathrm{~mm}(\mathrm{n}=24)$ である。雌：PW の最大値 が 4.97 mm ，最小値が 3.57 mm であり，大型は小型の約 1.4 倍である。PLの最大値が 2.30 mm ，最小値が 1.60 mm であり，大型は小型の約 1.4

倍である。PW の平均値は 4.25 mm ，PLは 1.98 mm ，PL／PWは0．47（ $\mathrm{n}=24$ ）である。

宮崎県北川町：PW の最大値が 3.84 mm ，最小値が 3.17 mm であり，大型は小型の約 1.2 倍で ある。PL の最大値が 2.38 mm ，最小値が 1.74 mm であり，大型は小型の約 1.4 倍である。PW の平均値は 3.46 mm ，PLは 2.06 mm ， $\mathrm{PL} / \mathrm{PW}$ は $0.59(\mathrm{n}=6)$ である。

鹿児島県宮之城町：PW の最大値が 3.78 mm ，最小値が 3.39 mm であり，大型は小型の約 1.1倍である。PL の最大値が 2.23 mm ，最小値が 1.75 mm であり，大型は小型の約 1.3 倍である。 PWの平均値は 3.61 mm ，PLは 1.98 mm ，PL／ PW は 0.55 （ $\mathrm{n}=3$ ）である。

新潟県糸魚川市：PWの最大値が 4.09 mm ，最小値が 3.14 mm であり，大型は小型の約 1.3 倍 である。PLの最大値が 2.54 mm ，最小値が 1.76 mm であり，大型は小型の約 1.4 倍である。PW の平均値は 3.69 mm ，PLは 2.30 mm ， $\mathrm{PL} / \mathrm{PW}$ は0．62（n＝13）である。

岐阜県多治見市：PWの最大値が 4.41 mm ，最小値が 3.51 mm であり，大型は小型の約 1.3 倍 である。PLの最大値が 2.66 mm ，最小値が 1.68 mm であり，大型は小型の約 1.6 倍である。PW の平均値は 3.90 mm ，PLは 2.14 mm ， $\mathrm{PL} / \mathrm{PW}$ は0．55（ $\mathrm{n}=9$ ）である。

神奈川県横須賀市：PWの最大値が 3.93 mm ，最小値が 2.72 mm であり，大型は小型の約 1.4倍である。PL の最大値が 2.35 mm ，最小値が 1.37 mm であり，大型は小型の約 1.7 倍である。 PW の平均値は 3.19 mm ，PLは 1.91 mm ，PL／ PW は 0.60 （ $\mathrm{n}=27$ ）である。

青森県弘前市：PW の最大値が 4.57 mm ，最小値が 3.11 mm であり，大型は小型の約 1.5 倍 である。PLの最大値が 2.70 mm ，最小値が 2.01 mm であり，大型は小型の約 1.3 倍である。PW の平均値は 3.61 mm ，PLは 2.20 mm ，PL／PW は0．61（n＝27）である。

PL／PWの平均値が最も小さかった集団は 0.55

の多治見市と鹿児島県宮之城町の集団であり，最 も大きかったのは 0.62 の新潟県糸魚川市の集団 である（第3図）

各地域集団のPWとPLの関係は第3図に示し た。外部形態の変異は連続し，西日本と東日本の集団との間に明膫な差異は認められなかった。し かし，西日本の集団は外部形態において集団内で の変異が大きいものの，特に雌において大型の個体が多く含まれたが，平均値では有意な差は認 められなかった（第2表）。

発光パターンを解析した各地の集団について，雄成虫の前胸背の大きさを比較した結果，両生態型は各集団の個体変異幅を超えて外部形態から は区別できなかった。しかし，前胸背の幅と長さ の関係において，近似式が集団ごとに異なってい た（第3図）。また，これらの集団の前胸背幅と長さを第4図に示した。各集団に僅かな変異が認められるが，有意な差は認められなかった。ま た，全国各地の雄個体について前胸背の大きさを測定した（第5図）。

分 布

ゲンジボタルの生息地（第1表）は涌水源•用水路•河川を中心とした流水域（第19図）に生息 し，低地から標高 1600 m 前後まで分布し，青森県が分布の北限となっている。西日本型ゲンジ ボタルは岐阜県多治見市から長野県辰野町，新潟県越路町を結ぶ地域より西側に，東日本型ゲン ジボタルはそれより東側の新潟県越路町，長野県茅野市，愛知県豊橋市に分布し，新潟県長岡市•山梨県芝川町では両型の中間型に相当する集団 が分布する。

発生消長

ゲンジボタルは5月中旬（鹿児島県）から7月下旬（青森県弘前市•長野県茅野市）まで記録さ れているが，標高や緯度の違いにより出現期は異 なる（第 1 表）。最盛期は年によって異なるが，通常は7月中旬ごろである。神奈川県横須賀市に おける出現期を第2表に示した。横須賀市では通

第3図 ゲンジボタル 8 集団の個体の大きさ．
1 集団について $5 \sim 20$ 個体計測して作成．PW：前胸背板の幅，PL：前胸背板の長さ
1．長崎県対馬，2．福岡県北九州市，3．宮崎県北川町，4．長野県茅野市，5．新潟県糸魚川市，6．岐阜県多治見市，7．神奈川県横須賀市，8．青森県弘前市．

第2表 各地のゲンジボタル集団の前胸背長と幅。

㛗	採集地	前胸监長（PL 前胸背蝠（PW）PL／PW				平均値	1.980	4.252	0.468
0^{1}	北九州市道者197806	1.950	3.276	0.595		最大値	2.300	4.978	0.514
0^{7}	北九州市道春197806	1.790	3.217	0.556		最小値	1.597	3.565	0.391
8	北九州市道春197806	2.096	3.703	0.566		摽準偏美	0.227	0.503	0.050
0	北九州市道春197806	2.458	4.185	0.587		数値数	6	6	6
0	北九州市道春197806	1.917	3.501	0.548					
0^{7}	北九州市道春197806	2.395	3.843	0.623					
0	北九州市道春197806	1.992	3.706	0.538	0^{5}	宮䅇県北川町19890615	2.016	3.198	0.630
\bigcirc	北九州市道春197806	1.669	3.247	0.514	0^{6}	宮畸県北川町19890615	1.938	3.266	0.593
0^{7}	北九州市道春197806	1.674	3.297	0.508	0^{7}	宮畸県北川町19890615	2.379	3.774	0.630
क	北九州市道春197806	1.625	3.099	0.524	\cdots	宮崎県北川町19890615	2.164	3.533	0.613
－	北九州市道春197806	2.198	3.938	0.558	${ }^{2}$	宮崎県北川町19890615	2.094	3.838	0.546
0	北九禹市䆃春197806	1.915	3.403	0.563	－	宮崎県北川町199606	1.737	3.168	0.548
${ }^{\circ}$	北九州市道春197806	2.002	3.366	0.595					0.548
0°	北九刑市道奉197806	1.823	3.247	0.561		平均値	2.055	3.463	0.593
0	北九灲市道春197806	1.972	3.385	0.583		最大値	2.379	3.838	0.630
σ	北九州市道春197806	1.986	3.693	0.538		最小値	2.379 1.737	3.838 3.168	0．546
σ	北九州市道春197806	1.921	3.173	0.605		標準偏差	0.217	3.168 0.296	0.039
\％	北九州市道春197806	1.946	2.887	0.674		螵鿄偏差数値数	0.217 6	0.296 6	0.039 6
0^{7}	北九州市道春197806	1.882	3.843	0.490			6	6	6
8	北九州市道春197806	2.084	3.514	0.593					
8	北九州市道春197806	1.742	2.782	0.626					
8	北九州市道春197806	1.833	3.351	0.547	\％		1.965	3.778	0.520
${ }^{6}$	北九州市道春197806	2.207	3.520	0.627	${ }^{\circ}$	麀児島緊宮之城町1999	1.747	3.392	0.515
a^{7}	北九州市道春197806	2.169	3.642	0.596	$\underline{\square}$	鹿児島県宮之城町1999	2.227	3.653	0.610
	平均值	1.969				平均値	1.980	3.608	0.548
	最大値	2.458	4.185	0.674		最大値	2.227	3.778	0.610
	最小値	1.625	2.782	0.490		最小値	1.747	3.392	0.515
	標準偏差	0.212	0.330	0.043		褾準偏差	0.240	0.197	0.053
	数値数	24	－ 24	24		数値数	3	3	3
우	北九州市道春197806	2.386	3.941	0.605	우	鹿児島県宮之城町1999	2.123	4.243	0.500
웅	北九州市道春197806	2.529	4.286	0.590					
우	北九州市道春197806	2.771	4.853	0.571					
					0^{8}	新畇県糸魚月市198806	2.147	3.333	0.644
	平均値	2.562	4.360	0.589	${ }^{7}$	新渴県糸魚川市198806	2.176	3.438	0.633
	最大値	2.771	4.853	0.605	0	新渴県糸刍川市198806	2.391	3.689	0.648
	最小値	2.386	3.941	0.571	8	新渴県糸魚川市198806	2.375	3.561	0.667
	標準偏茎	0.195	0.460	0.017	σ°	新渪県糸魚川市198806	1.761	3.141	0.561
	数値数	3	3	3	0^{7}	新潟県糸魚川市198806	2.226	3.548	0.627
					0	新渴䢙糸魚川市198806	2.266	3.474	0.652
					σ^{7}	新潟県糸魚川市198806	2.389	3.899	0.613
${ }^{7}$	能本県人吉市19870603	1.660	3.116	0.533	8	新渴県糸魚川市198806	2.542	4.089	0.622
우	熊本県人吉市19870603	2.743	5.056	0.543	0^{7}	新渴県糸魚川市198806	2.541	4.038	0.629
					0	新渴県糸魚川市198806	2.431	3.928	0.619
					σ^{7}	新潟県糸魚川市198806	2.428	3.968	0.612
0^{6}	長崎県対馬19900617	2.053	3.901	0.526	0^{7}	新晹県糸魚川市197605	2.226	3.887	0.573
8	長崎県対馬19830703	2.113	3.440	0.614					
σ^{7}	長崎県対馬19830703	2.261	3.667	0.617		平均値	2.300	3.692	0.623
0^{2}	長崎県対馬19830703	1.947	3.248	0.599		最大値	2.542	4.089	0.667
0^{7}	長崎県対馬19830703	1.513	2.902	0.521		最小値	1.761	3.141	0.561
の	長崎県対馬19830703	1.625	2.780	0.585		標準偏差	0.207	0.299	0.030
0	長崎県対馬19830703	1.815	2.751	0.660		数値数	13	13	13
0^{2}	長崎県対馬19830703	1.534	2.528	0.607					
0^{7}	長渏県対馬19830703	1.624	2.913	0.558					
8^{8}	長崎県対馬19830703	1.617	3.025	0.535	0^{7}	岐阜県多治睍市199461	2.213	3.889	0.569
σ	長崎県対馬19830703	1.904	3.385	0.562	0^{6}	岐阜県多治見市199461	1.905	3.512	0.542
${ }^{\circ}$	長崎県対馬19830703	1.701	2.819	0.603	0^{4}	岐阜県多治見市199461	1.995	3.584	0.557
0^{3}	長䗁県対馬19830703	1.974	3.508	0.563	0	岐皁県多治見市199461	2.009	3.660	0.549
8	長崎薬対馬19830703	2.074	3.391	0.612	0°	岐阜県多治見市199461	2.657	4.221	0.629
					0^{3}	岐阜県多治見市199461	2.168	4.077	0.532
	平均値	1.840	3.161	0.583	0^{7}	岐乽県多治見市199461	2.307	4.206	0.549
	最大值	2.261	3.901	0.660	0	岐阜県多治見市199461	2.356	4.407	0.535
	最小値	1.513	2.528	0.521	0^{6}	岐阜県多治畕市199461	1.676	3.565	0.470
	標準偏差	0.240	0.401	0.040					
	数値数	14	14	14		平均値	2.143	3.902	0.548
						最大値	2.657	4.407	0.629
						最小値	1.676	3.512	0.470
후	長崎県対馬19830703	2.064	4.013	0.514		標準偏差	0.286	0.336	0.041
우	長崎県対馬19830703	1.597	3.565	0.448		数値数	9	9	9
우	長崎県対馬19830703	1.977	3.958	0.499					
우	長崎県対馬19830703	2.300	4.474	0.514					
우	長崎県対馬19830703	1.997	4.525	0.441	무	吱阜県多治見市199461	2.660	5.084	0.523
오	長崎県対馬19830703	1.946	4.978	0.391	우	畦阜県多治見市199461	1.730	3.422	0.506

8	横須賀市野比19800610	2.345	3.542	0.662
－	横須賀市野比19800610	1.938	3.249	0.596
8	横須賀市野比19800610	2.124	3.658	0.581
0^{7}	横須賀市野比19800610	1.654	2.836	0.583
8	横須賀市野比19800810	1.922	3.445	0.558
0^{7}	横須賀市野比19800610	2.007	3.366	0.596
0^{7}	横須賀市野比19800610	2.204	3.243	0.680
0^{7}	横須賀市野比19800610	2.000	3.274	0.611
0	横須賀市野比19800610	1.430	2.854	0.501
8	横須賀市野比19800610	1.821	2.912	0.625
8^{8}	横須賀市野比19800610	1.804	2.978	0.606
8	横須虽市野比19800610	2.306	3.788	0.609
0^{7}	横須資市野比19800610	2.046	3.292	0.622
σ^{7}	横須賀市野比19800610	1.885	3.078	0.612
0	横須賀市野比19800610	1.708	2.827	0.604
0^{8}	横須賀市野比19880628	1.847	3.294	0.561
∇^{7}	横須賀市野比19880628	1.643	2.803	0.586
\square	枆㹮脅市野比19880628	1.568	2.728	0.575
8	横須賀市野比19880628	1.929	3.390	0.569
『	横須賀市野比19880628	1.875	2.815	0.666
0°	横須賀市野比19880628	1.372	2.722	0.504
8	横須賀市野比19880628	1.895	3.153	0.601
σ°	横須賀市野比19880628	1.987	3.161	0.629
\％	横須賀市野比19890618	1.908	3.171	0.602
－	野出鏡田19950615	1.790	3.493	0.512
8	撗須賀市野比19860615	2.282	3.934	0.580
त	横須賀市野比19870614	2.148	3.047	0.705
	平均值	1.905	3.187	0.598
	最大値	2.345	3.934	0.705
	最小値	1.372	2.722	0.501
	摽準偏差	0.246	0.326	0.048
	数値数	27	27	27
\％	青森県弘前市19850711	2.110	3.422	0.617
8	青㚞県弘前市19850711	2.361	3.689	0.640
0^{5}	青森県弘前市19850711	2.098	3.511	0.598
0°	青森県弘前市19850711	2.081	3.715	0.560
${ }^{\circ}$	青森県弘前市19850711	2.082	3.208	0.649
0	青森県弘前市19850711	2.393	3.890	0.615
${ }^{\circ}$	青森県弘前市19850711	2.385	3.507	0.680
${ }^{\circ}$	青森県弘前市19850711	2.055	3.112	0.660
0°	青森県弘前市19850711	2.200	3.445	0.639
${ }^{\circ}$	青森県弘前市19850711	2.075	3.329	0.623
0^{9}	青森県弘前市19850711	2.083	3.749	0.556
σ°	青森県弘前市19850711	2.083	3.749	0.556
㒸	青森県弘前市19850711	2.366	3.872	0.611
8	青森県弘前市19850711	2.410	3.905	0.617
0^{7}	青森県弘前市19850711	2.234	3.588	0.623
8	青森県弘前市19850711	2.058	3.569	0.577
σ^{7}	青菻県弘前市19850711	2.069	3.479	0.595
\％	者森県弘前市19850711	2.296	3.619	0.634
σ°	青森県弘前市19850711	2.081	3.264	0.638
0^{7}	青森県弘前市19850711	2.025	3.510	0.577
0^{7}	青森県弘前市19850711	2.313	3.873	0.597
0^{4}	青森県弘前市19850711	2.255	3.548	0.636
우	青森県弘前市19850711	2.701	4.573	0.591
0^{6}	青森県弘朔市19850611	2.009	3.420	0.587
『	青森県弘前市19850611	2.153	3.413	0.631
σ^{7}	青森県弘前市19850611	2.265	3.786	0.598
大	青森県弘前市19850611	2.099	3.632	0.578
	平均値	2.198	3.607	0.610
	最大値	2.701	4.573	0.680
	最小値	2.009	3.112	0.556
	標準偏差	0.163	0.285	0.032
	数値数	27	27	27

常6月10日頃を中心とする約 10 日間が発生期 となるが，気温変化によって変動し，1998年は 5 月中旬が最盛期となり，下旬には発生を終え，例年と比較すると約 2 週間早かった。同じ地域 であっても，標高が高くなるに従い，発生期は遅

れ，緯度が高くなるほど発生期は遅れる。

活動習性と発光パターン

各地のゲンジボタルの活動習性•照度•気温•探雌飛翔行動時（第8図）における発光パターン （第9図）とその経時変化などの観察結果を第3．4表と資料 $1 \sim 12$ に示す。神奈川県横須賀市にお ける経時•日•年変化は第12図に示した。発光 パターンは条件が変動してもほぼ一定であった。 1998年5月27日 $\left(15^{\circ} \mathrm{C}\right)$ に $19: 18 ~ 20: 16$ および1999年5月26日（ $18^{\circ} \mathrm{C}$ ）19：42～20： 04 まで発光パターンを観察した結果を第10図 に示した。気温や時間が相違しても雄の飛翔発光間隔は大きな変動を示さなかった。さらに経日変化は1998年5月13日～6月10日まで観察 したが，発生初期と後期とで雄の飛翔発光間隔 に明瞭な差異が認められなかった（第 11 図）。 1990年～2000年における飛翔発光間隔では，有意な年変動は認められなかった（第 12 図）。

全国各地のゲンジボタルの発光行動•照度•気温•発光パターンなどの観察結果（第13図，第4表）は以下のとおりである。

長崎県対馬

1990年6月18日
川幅約 15 m ，水深 20 cm ，川底は砂礫で，両岸 には植物が繁茂する。部分的にこの植物が川面 を被い，暗い空間を形成している。日没後，両岸 の植物の葉で発光を開始し，20：00には集団同時明滅が明瞭に認められた。発光個体密度は非常に高かった。発光間隔は他地域集団に比較し ても非常に短かった。同日の発光パターンは以下の通りである。

20：17雄の飛翔発光間隔（以後I とする）は平均 1.85 秒 $(\mathrm{n}=5, \mathrm{~s}=0.10)$ である。発光持続時間（以後 D とする）は 0.71 秒である。 20：27 Iは平均 2.12 秒（ $\mathrm{n}=2$ ），Dは 0.55 秒。 $20: 55$ I は平均 1.90 秒（ $\mathrm{n}=6, \mathrm{~s}=0.05$ ）。
20：57 Iは平均 1.94 秒（ $\mathrm{n}=5$ ），Dは 0.65 秒 である。別の個体ではIは平均 1.90 秒（ $\mathrm{n}=5$ $\mathrm{s}=0.09$ ），Dは 0.6 秒。

第4図 ゲンジボタル7集団の前胸背幅（灰色表示）と長さ（黒色表示）
1．北九州市小倉区道春，2．長崎県対馬， 3．宮崎県北川町，4．新潟県糸魚川市， 5 。岐阜県多治見市，6．神奈川県横須賀市野比，7．青森県弘前市。

第5図 各地のゲンジボタル雄の前胸背幅比較。
1．長崎県対馬，2．北九州市道春，3．福岡県舟小屋，4．熊本県旭志村， 5 ．熊本県山鹿市，6．熊本県阿蘇町，7．熊本県人吉市， 8 ．大分県飯田町，9．宮崎県北川町，10．鹿児島県入来町， 11 ．鹿児島県宮之城町，12．山口県山口，13．山口県豊田町，14．島根県隠岐，15．岡山県哲多，16．高知県大野見村，17．香川県塩江町，18．京都市清滝川，19．長野県松本市，20．長野県辰野町，21．長野県石の湯，22．新潟県糸魚川市， 23．岐阜県多治見市，24．山梨県清里，25．山梨県下部町，26．神奈川県秦野市，27．横浜市舞岡，28．神奈川県逗子市，29．横須賀市野比 ，30．神奈川県横須賀市山中町，31．神奈川県厚木市，32．東京都33．群馬県吾妻郡東村， 34 ．山形県米沢市，35．山形県湯瀬町，36．宮城県東和町，37．青森県青森市，38．青森県弘前市

第6図 各地のゲンジボタル雌の前胸背幅と長さ。

第7図 各地のゲンジボタル雌の前胸背幅比較。 1．長崎県対馬，2．北九州市道春，3．熊本県人吉市，4．鹿児島県宮之城町，5．熊本県阿蘇町 6．熊本県旭志村，7．大分県飯田町．8．高知県大野見村．9．京都市清滝川，10，岐阜県多治見市，11．長野県茅野市，12．山梨県清里 13．横浜市舞岡，14．横須賀市 山中町． 15.山形県米沢市，16．宮城県東和町．17．青森県青森市。

第8図 ゲンジボタルの探雌飛翔発光軌跡。上：熊本県旭志村の集団，下：神奈川県横須賀市野比の集団。

21：00 ツシマヒメボタル発光

1990年6月19日
発光開始時刻は19：30前後であり， $20: 00$ 前後には明膫な集団同時明滅が見られた。発光間隔は前日と同様に短かった。

第9図 神奈川県横須賀市野比におけるゲンジボタル雄の飛翔発光パターンの経時変化．
1．1999年5月23日 19：39，2．1999年5月23日 19：57，3．1999年5月26日 19：42，4． 1999年 6 月 10 日 $20: 16,5.1999$ 年 6 月 12 日 19：30， 6.1998 年 5 月 27 日 19：25，7．1998年5月 27日 $20: 00,8.1998$ 年 5 月 27 日 20：16．

18：32		$24.5{ }^{\circ} \mathrm{C}$	曇	20：03	I は平均 1.44 秒（ $\mathrm{n}=6, \mathrm{~s}=0.05$ ）
19：07		$23.8{ }^{\circ} \mathrm{C}$		20：28	Iは平均 1.38 秒（ $\mathrm{n}=6, \mathrm{~s}=0.008$ ），Dは
	75 1x			0.55 秒。	
19：34	0.91 lx	1 個体発光		20：28	Iは平均 1.34 秒（ $\mathrm{n}=6, \mathrm{~s}=0.05$ ），Dは
19：59	0.341 x	10 個体		0.97 秒。	

第9図 神奈川県横須賀市野比におけるゲンジボタル雄の飛翔発光パターンの経時変化。
9．1998年5月28日 19：30，10．1998年5月31日 19：30，11．1998年6月2日 19：40，12．1998年6月8日 19：28，13．1998年6月10日 19：28，14．1997年6月24日 20：06 $20^{\circ} \mathrm{C}$ ， 15.1989 年 6 月 3日 19：30，16．1989年5月26日 20：04．

20：45 Iは平均 1.41 秒（ $\mathrm{n}=6, \mathrm{~s}=0$ ），Dは 0.54秒（第 13 図－1）。
21：10 Iは平均 1.38 秒（ $\mathrm{n}=4, \mathrm{~s}=0.03$ ）， D は 0.53 秒。

雄は草の根本で誘引発光シグナルを放つ雃を

探すために，20：30以降も群飛して発光点滅周期を同調させた（第13図，第4表）。

佐賀県小城町

1992年5月31日
川幅約 40 m ，流域はヨシが繁茂しているが，

第10図 神奈川県横須賀市野比におけるゲンジボタ ル雄の発光間隔の経時変化．上：1998年5月27日 $15^{\circ} \mathrm{C}$ ，下： 1998 年5月26日 $18^{\circ} \mathrm{C}$

第11図 神奈川県横須賀市野比におけるゲンジボタ ル雄の日経過に伴う飛翔発光間隔。 1998年5月23日～6月10日に記録。 1．5月23日， 2.5 月 26 日， 3.5 月 27 日， 4． 5 月 28 日， 5.5 月 31 日， 6.6 月 2 日， 7． 6 月 8 日， 8.6 月 10 日。

第12図 神奈川県横須賀市野比におけるゲンジボタ ル雄の年経過に伴う飛翔発光間隔。 1990年～2000年の記録に基づいて作成。 1．1990年6月3日，2．1994年6月17日， 3．1997年6月24日， 4.1998 年 5 月 23 日， 5．1999年5月26日，6．2000年6月6日。

水面上は開かれた空間となっている。発光密度 は高く，雄の探雌飛翔発光時に明瞭な同時明滅が認められた。発光間隔と発光持続時間は以下の通りであり，対馬の集団より長かった。

20：05 I は 3.09 秒（ $\mathrm{n}=4$ ， $\mathrm{s}=0.44$ ），D は 1.2秒（第13図－2）。
20：07 Iは2．47秒（n＝5，s＝0．18），Dは 0.95秒。
別個体ではIが 2.48 秒（ $\mathrm{n}=7, \mathrm{~s}=0.21$ ），Dは 1.1 秒。

更に別個体ではIが 2.38 秒（ $\mathrm{n}=7, \mathrm{~s}=0.22$ ）， D は 1.20 秒。
福岡県筑後市舟小屋

1994年5月31日

川幅は約 50 m ，対岸に生える楠の木葉上で発光を開始して，次第に飛翔発光したが，水面へ飛 び出さずに，樹木の暗い空間にとどまって発光し ていた。発光パターンは以下の通りである。

19：44 I は平均 2.56 秒（ $\mathrm{n}=5, \mathrm{~s}=0.07$ ），D は 1.3 秒（第 13 図－3）。

20：40 I は平均 2.83 秒（ $\mathrm{n}=2$ ），Dは 0.99 秒。熊本県山鹿市

1989年5月29日

川幅約 40 m ，河川敷には洲が生じ，ヨシなど の植物は繁茂していた。川の両側には道路があ り，一方は自動車のヘッドライドによる照明の影響で発光行動が擋乱された。ゲンジボタルは両岸の草葉に止まって発光を開始し，次第に飛翔発光行動に移った。20：00前後には最盛期とな，明瞭な集団同時明滅が見られた。発光パターンは以下の通りであり，一目水源に近いパターンであ る。

19：58 I は 2.79 秒（ $\mathrm{n}=4, \mathrm{~s}=0.16$ ），D は 0.84秒（第13図－5）。
熊本県山鹿市一目水源
1989年5月28日
地下水が豊富に湧き出しており，水面が広がっ た環境である。水源の石には苔が生え，植物に被 われて暗く，深夜に雌の集団産卵行動が観察でき た。同日は水辺の樹木に止まって発光する個体

第13図 全国各地のゲンジボタル雄の探雌飛翔発光パターン。
1．長崎県対馬1990年6月19日 20：45，2．佐賀県小城町1992年5月31日20：063．福岡県筑後市舟小屋1994年5月31日19：44，4～5．熊本県山鹿市1989年5月28日6．熊本県旭志村1991年5月29日 $20: 2319.5^{\circ} \mathrm{C}$ ，7．宮崎県綾町 1996 年 6 月 5 日 $21.5^{\circ} \mathrm{C}, 8$. 宮崎県北川町 1994年5月31日 $20: 2518^{\circ} \mathrm{C}$ 。

が多く，そのほとんどは雌個体である。時々，雄 が水面上を飛翔発光し，個体密度は低かった。集団同時明滅は明膫でなかった。

同地の照度および温度の経時変化は次の通り であった。

時刻	照度 (lx)	気温 $\left({ }^{\circ} \mathrm{C}\right)$
$19: 16$	180	19.5
$19: 11$	140	
$19: 24$	70	18
$19: 30$	30	18

第13図 9．福岡県北九州市1984年7月3日，10．高知県大野見村1987年7月7日20：5322，11．山口県豊田町江良川 1983 年 6 月 25 日 $20: 30 ~ 25^{\circ} \mathrm{C}, 12$ 。島根県隠岐 1991 年 6 月 24 日 $21: 19,13$ 。兵庫県扇ノ山 2000 年 7 月 29，14．京都府清滝川1994年6月28日，15．新潟県糸魚川市1986年6月 28 日，16．岐阜県多治見市1994年6月20日 20：17．

$19: 34$	9	17
$19: 37$	5	16.5
$19: 40$	4	16

深夜に記録した雄の飛翔発光パターンは次の

通りであった。
23：12 Iは 3.29 秒（ $\mathrm{n}=3$ ），Dは 1.31 秒（第 13図－4）。
熊本県菊池郡旭志村
1987年6月5日

第13図17．長野県辰野町 $19: 4020^{\circ} \mathrm{C}, 18$ ．長野県茅野市1993年7月23日 20：07，19．新潟県長岡市 1985年6月26日 19：30，20．新潟県越路町，21．新潟県越路町， 22 。愛知県豊橋市 2000 年 6 月 4日 20：00，23．山梨県下部町 $21: 0620^{\circ} \mathrm{C}, 24$ ．静岡県芝川町1986年6月27日 19：45．

川幅約 5 m ，両岸は護岸されているが，片側 は山林，他方は農道を挟んで畑が耕作されて いる。川底には土砂が堆積して洲が生じ，ヨ シなどの植物が生えている。護岸壁には水面上約 10 c mの位置に苔が生えて，樹木が被い

茂った場所には集団産卵が観察できた。
同日の発光開始時刻は以下の通りであった。
19：38 $25^{\circ} \mathrm{C}$ 発光開始。
19：45 半月が出る。
19：59 カジカ鳴く

第13図 25．神奈川県横須賀市長沢2000年6月6日，26．神奈川県逗子市池子1993年6月8日 19：50，27．神奈川県横須賀市山中町1998年5月30日19：40，28．神奈川県横須賀市秋谷1989年6月20日 19：56，29．神奈川県三浦市引橋1993年6月10日 19：44，30．神奈川県三浦市小網代1993年6月 17日 19：36，31．千葉県大原町1990年6月10日 19：45，32．群馬県吾妻郡東村1985年5月25日。

1991年5月29日
発光パターンは以下の通りであった。
20：23 19．5 ${ }^{\circ} \mathrm{C} \quad$ Iは 2.42 秒（ $\mathrm{n}=3$ ） 。 Dは 1.09秒（第 13 図－6）。
宮崎県綾町

1996年6月6日 北綾川で観察。気温 $17^{\circ} \mathrm{C}$ 。川幅約 20 m ，深い渓谷を流れる河川であり，大きな岩と砂磉の河川敷であり，水深は深いとこ ろでは 3 m 以上ある。ゲンジボタルは両岸に生え る樹木の葉にとまり発光を開始し，次第に飛翔発

第13図 33．栃木県足利市，34．山形県湯瀬町1985年7月12日，35．山形県米沢市小野川1985年7月12日，36．宮城県東和町 1985 年 7 月 8 日 $20: 40 \quad 16^{\circ} \mathrm{C}$ ， 37 。岩手県釜石市 1994 年 7 月 14 日 20：00， 38．青森県弘前市1985年7月11日 20：00．39－40．青森県市。

光した。人工照明の影響は全くなかった。発光パ ターンは以下の通りである。
20：46 川面を飛翔し，同時明滅した。雄のIは平均 2.49 秒（ $\mathrm{n}=2$ ）（第 13 図－7）。別個体では 2.5 秒 $(\mathrm{n}=2), \mathrm{D}$ は 1.02 秒。さらに別

個体では 2.26 秒（ $\mathrm{n}=3, \mathrm{~s}=0.24$ ）， D は 0.79 秒。

宮崎県北川町

川幅は約 40 m ，流域幅は約 10 m で，河川敷に河原が広がっている。河川底は砂磁であり，水深 は深いところでは 2 m 以上ある。岸の片側は急峻

第3表 ゲンジボタルの発光開始時刻•照度•気温。

観察地	観察日	発光開始時刻	照度 $(\mid x)$	気温 $\left({ }^{\circ} \mathrm{C}\right)$
長崎県対馬	19900619	$19: 34$	0.911	23.8
熊本県旭志村	19870615	$19: 38$		
高知県大野見村	19870607	$19: 44$		22.9
長野県茅野市	19970720	$20: 30$	0.03	18.1
神奈川県横須賀市野比	19980519	$19: 45$		17.8
神奈川県横須賀市野比	19860615	$19: 15$	1	
神奈川県横須賀市野比	19980526	$19: 12$	0.05	14.2
神奈川県横須賀市野比	19980527	$19: 08$	0.12	18.3
神奈川県横須賀市野比	19980528	$19: 16$	0.05	20
神奈川県横須賀市野比	19980531	$19: 18$		18.7
神奈川県横須賀市野比	19980601	$19: 13$	0.17	20.6
神奈川県横須賀市野比	19980602	$19: 20$	0.05	19.5
神奈川県横須賀市野比	19980608	$19: 15$	0.32	17.4
神奈川県横須賀市野比	19980609	$19: 12$	0.04	17.8
神奈川県横須賀市野比	19990603	$19: 13$		18.4
神奈川県横須賀市野比	19990610	$19: 20$		19.3
神奈川県横須賀市野比	19930612	$19: 10$		21.3
神奈川県横須賀市野比	19990613	$18: 56$	0.1	20
神奈川県横須賀市山中町	19980530	$19: 28$	0.02	21.8
神奈川県三浦市引橋	19970525	$19: 08$	0.25	13.6

な山林で部分的に樹木が水面を被つている。他方は河原を隔てて道路が川に沿つて作られてい る。ゲンジボタルは木の葉上で発光を開始し，次第に飛翔発光して明瞭な同時明滅した。同地に おける発光行動は資料1 の通りであった。

1999年6月1日の雄の飛翔発光パターンは以下の通りであった。

20：21 Iは2．09秒（n＝6，s＝0），Dは 0.55 秒 （第13図－8）。別個体ではIが2．12秒（ $\mathrm{n}=7, \mathrm{~s}=0$ ， Dは 0.78 秒。

福岡県北九州市小倉頂吉

1984年7月3日 気温 $26^{\circ} \mathrm{C}$
水路は幅 1 m ，水深 10 cm ，片側は山林，他方 は水田が耕作されている。水路上を樹木が被い茂った場所があり，葉上には雌が多数止まつてい た。ゲンジボタルは葉に止まり発光を開始し，次第に飛翔発光した。雄の個体数は少なかったが，深夜には雌の特異な飛翔発光行動が観察できた。

同地にはヘイケボタルとヒメボタルが生息し， 3種が同時に飛翔発光することがあった。草地に はオオマドボタルの幼虫が発光していた。同日 のゲンジボタル雄の飛翔発光パターンは以下の通りであった。

Iは平均 1.37 秒（ $\mathrm{n}=7$ ， $\mathrm{S}=0$ ）， D は 0.68 秒（第 13 図－9）。別個体ではIは平均 1.63 秒（ $n=6$ ， $\mathrm{S}=0.10$ ），Dは 0.85 秒。更に別の個体は I が平均 1.63 秒（ $\mathrm{n}=6$ ， $\mathrm{s}=0.13$ ）， D は 0.7 秒。

高知県大野見村
1987年6月7日
川幅約 20 m ，河川敷には部分的にヨシが生え る。両岸は樹木や草は繁茂し，川底は砂砶であ る。河川の片側は林道を挟んで山林，一方は幅狭 い水田が耕作されている。ゲンジボタルの生息個体数は多く，明瞭な集団同時明滅が見られた。林道には杉林からヒメボタルが飛来し発光した。雄の飛翔発光は深夜まで見ることができた。同

第4表 ゲンジボタルの発光パターン。
$\mathrm{sd}=$ 標準偏差，観察地は第 15 図と同様。計測値単位は mm．

䍩察地	絸察日	钼察時戓	気温 $\left({ }^{\circ} \mathrm{C}\right)$	訫測值	計測値	計測值	計測値	計測徝	評測値	測値	平均値	大	小值		発光時間
小城	19920531	20：05		3.66	2.6	3.07	3.01				3.085	3.66	2.6	0.437	$\frac{1.2}{}$
小城	19920531	20：07	20	3	3.07	3	3.3				3.093	3.3	3	0.142	1.3
小城	19920531	20：07	20	2.29	2.77	2.44	2.44	2.44			2.476	2.77	2.29	0.177	0.95
小城	19920531	20：07	20	2.36	2.66	2.48	2.48	2.48	2.77	2.12	2.479	2.77	2.12	0.208	1.1
小城	19920531	20：07	20	2.36	2.07	2.6	2.21	2.21	2.6	2.6	2.379	2.6	2.07	0.223	1.2
小城	19920531			2.34	2.66	2.12	2.64	2.54	2.48		2.463	2.66	2.12	0.205	1.2
小倉	19840703		26	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37	0	0.68
小倉	19840703		26	1.7	1.64	1.48	1.59	1.59	1.78		1.63	1.78	1.48	0.103	0.845
小倉	19840703		26	1.78	1.66	1.38	1.66	1.66	1.66		1.633	1.78	1.38	0.133	0.845 0.7
対馬	19900618	20：17		1.82	1.99	1.72	1.86	1.86			1.85	1.99	1.72	0.097	0.71
対馬	19900618	20：27		2.12	2.12						2.12	2.12	2.12	0	0.55
対馬	19900618	20：55		1.88	1.88	1.88	1.88	1.88	2.01		1.902	2.01	1.88	0.053	0.67
対馬	19900618	20：57		2.01	1.82	1.83	2.03	2.03			1.944	2.03	1.82	0.109	0.65
対馬	19900619	20：03	23.8	1.42	1.42	1.42	1.42	1.42	1.55		1.442	1.55	1.42	0.053	0.6
対馬	19900619	20：28	23.8	1.4	1.38	1.38	1.38	1.38	1.38		1.383	1.4	1.38	0.008	0.55
対馬	19900619	20：28	23.8	1.36	1.36	1.36	1.36	1.36	1.24		1.34	1.36	1.24	0.049	0.97
対馬	19900619	20：45	23.8	1.41	1.41	1.41	1.41	1.41	1.41		1.41	1.41	1.41	0	0.54
対馬	19900619	21：10	23.8	1.42	1.36	1.36	1.36				1.375	1.42	1.36	0.03	0.53
対馬	19900619		23.8	1.46	1.46	1.46	1.46				1.46	1.46	1.46	0	0.47
対馬	19900620			1.59	1.59	1.59	1.59	1.59	1.59		1.59	1.59	1.59		0.89
対馬	19900620			1.5	1.59	1.59	1.59	1.59	1.59		1.575	1.59	1.5	0.037	0.89
旭志村	19910529	20：23	19.5	2.5	2.3	2.45					2.417	2.5	2.3	0.104	1.09
一目水源	19890528	23：12	16	3.29	3.29	3.29					3.29	3.29	3.29	0	1.31
舟小屋	19940531	19：44		2.49	2.49	2.61	2.61	2.61			2.562	2.61	2.49	0.066	1.3
舟小屋	19940531	22：40		2.83	2.83						2.83	2.83	2.83	0	0.99
山鹿	19890529	19：58		2.65	2.65	2.92	2.92				2.785	2.92	2.65	0.156	0.84
綾	19960606	20：46	17	2.36	2.61						2.485	2.61	2.36	0.177	1.02
綾	19960606	20：46	17	2.31	2.42	2.17					2.3	2.42	2.17	0.125	0.7
綾	19960606 19990602	20：46	17 20.2	1.98	2.4	2.4 2.09					2.26	2.4	1.98	0.242	0.79
北川	19990602	20：21	20.2	2.12	2.12	2.12	2.12	2.12	2.12	2.12	2.09 2.12	2.09	2.09	0	0.55
大野見村	19870607	20：53	22.5	1.73	1.73	1.73	1.73	1.7			1.724	1.73	1.7	0.013	1.19
大野見村	19870607	20：53	22.5	1.9	1.9	1.9	1.9	1.9			1.9	1.9	1.9	0	1.01
㩊怶	19910625	20：20		1.77	1.77	1.77					1.77	1.77	1.77	0	0.72
隠岐	19910625	20：17		1.69	1.64	1.75	1.75				1.708	1.75	1.64	0.053	0.575
江良川	19840625	20：10	25	1.56	1.56	1.56	1.51	1.51			1.54	1.56	1.51	0.027	078
江良川	19840625	20：10	25	1.51	1.51	1.51	1.51	1.51	1.51		1.51	1.51	1.51	0	0.65
磺ノ山	20000729	21：30		2.11	1.88	1.79	1.74				1.88	2.11	1.74	0.164	1.18
清滝	19830628		21	1.98	1.98	1.98	1.98				1.98	1.98	1.98	0	0.875
清滝	19830628		21	1.74	1.64	1.75	1.69	1.45	1.75		1.67	1.75	1.45	0.116	0.6
清滝	19830702			2.48	2.48	2.48	2.12	2.12	2.12		2.3	2.48	2.12	0.197	1.14
清漳	19830702			0.81	1.23	1.23	1.03	1.7	1.46		1.243	1.7	0.81	0.313	
辰野	19810704	19：40	20	1.69	1.88	2.07	1.86	1.86	1.86		1.87	2.07	1.69	0.121	0.93
糸魚川	19860628			1.8	1.97	1.76	1.8				1.833	1.97	1.76	0.094	0.77
糸魚川	19860628			1.8	1.8	1.94	1.75	1.88	2.08		1.875	2.08	1.75	0.121	0.87
糸魚川	19860628			1.95	1.95	1.8	1.8				1.875	1.95	1.8	0.087	
糸魚川	19860628			1.85	1.85	1.85	1.85	1.85	1.85		1.85	1.85	1.85	0	0.8
多治見	19940620	20：17	18.5	2.22	2.22	2.22					2.22	2.22	2.22	0	1.18
豊橋	20000604	20：00		4.8	4.32	4.32	5.09	5.04	4.99	5.38	4.849	5.38	4.32	0.4	2.51
豊橋	20000604	20：00		4.56	5.04						4.8	5.04	4.56	0.339	2.51
越路町	19950616	17：53	21.3	3.94	3.94						3.94	3.94	3.94	0	
越路東谷				1.91	1.91	2.1					1.973	2.1	1.91	0.11	0.93
趈路町東谷				2.32	2.01	2.01	2.41				2.188	2.41	2.01	0.208	0.96
芝川	19860627	19：45		2.7	2.86	2.93					2.83	2.93	2.7	0.118	0.83
芝川	19860627	19：49		2.84	2.84	2.84					2.84	2.84	2.84	0	0.7
芝川	19860630	19：50		2.93	2.93	3.03	3	3.13	3.01		3.005	3.13	2.93	0.074	0.98
芝川	19870629	19：57		3.19	3.19	3.25	3.25				3.22	3.25	3.19	0.035	1.78
下部町	19860616	21：06	20	4.2							4.2	4.2	4.2		1.58
下部町	19890616	21：06	20	3.69	3.69	3.57	3.57				3.63	3.69	3.57		1.19
茅野	19930723	19：30	20.5	4	4.1	4.1					4.067	4.1	4	0.058	0.94
茅野	19930723	19：47	20.5	3.4	4.39	3.4	3.09				3.57	4.39	3.09	0.566	0.93
茅野	19930723	19：55	20.5	3.66	4.54	3.56					3.92	4.54	3.56	0.539	0.83
茅野	19930723	20：07	20.5	3.61	3.61	3.61	3.61				3.61	3.61	3.61	0	0.99
長岡	19850626	19：45		2.54	2.54	2.7	2.7	2.7	2.7		2.647	2.7	2.54	0.083	0.86
長岡	19850626	19：50		2.45	2.69	2.36					2.5	2.69	2.36	0.171	0.89
東村	19850525			3.89	3.6						3.745	3.89	3.6	0.205	1.62
東村	19850525			3.59	4.13	3.45					3.723	4.13	3.45	0.359	1.62
大原	19900610	19：41		5.02	4.39	4.76					4.723	5.02	4.39	0.317	1.56
大原	19900610	19：45		5.69	4.87	5.37					5.31	5.69	4.87	0.413	1.76
池子	19930608	19：26		5.1	4.04	4.47	4.61				4.555	5.1	4.04	0.437	1.5
池子	19930608	19：36		3.66	3.49	3.39					3.513	3.66	3.39	0.137	1.68
池子	19930608	19：50		3.54	3.54	5.38					4.153	5.38	3.54	1.062	1.4
池子	19930608	20：17		4.83	4.46	4.24					4.51	4.83	4.24	0.298	2.51
池子	19930608			4.54	3.79	5.17					4.5	5.17	3.79	0.691	2

小網代	19930618	19：34	18	3.8	3.63	4.76	4.71		4.225	4.76	3.63	0.593	1.95
小網代	19930618	19：35	18	4.25	3.54	3.72	3.97		3.87	4.25	3.54	0.309	1.68
小網代	19930618	19：50	18	3.22	3.87	4.15	3.66		3.725	4.15	3.22	0.392	2.335
小網代	19930618	20：02	18	3.62	3.53	3.53			3.56	3.62	3.53	0.052	1.75
小綱代	19930618	20：17	18	3.13	3.13	3.57			3.277	3.57	3.13	0.254	1.55
子安	19890620	19：50		6.34	6.1				6.22	6.34	6.1	0.17	2.9
野比	19840620			3.49	2.73	3.71	2.98	3.08	3.198	3.71	2.73	0.396	1.36
野比	19840620			3.01	3.49	2.69			3.063	3.49	2.69	0.403	1.5
滪比	19900603	19：39	19	4.45	4.31	3.97			4.243	4.45	3.97	0.247	2.04
野比	19900603	19：40	19	4.31					4.31	4.31	4.31		1.48
野比	19900603	19：43	19	4.44	4.44				4.44	4.44	4.44	0	1.645
野比	19940617	19：35		3.84	4.37	4.86			4.357	4.86	3.84	0.51	1.945
野比	19940617	19：41		3.66	3.16	3.78	6.04		4.16	6.04	3.16	1.282	1.82
野比	19970624	19：57	20	4.3	4.3	4.3			4.3	4.3	4.3		1.6
野比	19970624	20：06	20	4.04	3.68				3.86	4.04	3.68	0.255	1.43
野比	19980523	19：41		3.7	4.47	4.47	4.47		4.278	4.47	3.7	0.385	1.59
野比	19980526	19：52	17.5	6.19	5.3	6.62			6.037	6.62	5.3		2.1
野比	19980527	19：18	15	6.21	4.05	3.82			4.693	6.21	3.82	1.318	2.395
野比	19980527	19：21	15	4.18					4.18	4.18	4.18		2.68
野比	19980527	19：27	14	4.58	4.43				4.505	4.58	4.43	0.106	1.95
野比	19980527	20：00	15	5.53					5.53	5.53	5.53		3.12
野比	19980527	20：16	15	4.6	4.91	4.6			4.703	4.91	4.6	0.179	2.5
野比	19980528	19：30	19.6	3.84	4.18				4.01	4.18	3.84	0.24	2.46
野比	19980528	19：42	20.1	4.27					4.27	4.27	4.27		2.215
野比	19980531	19：30	19.2	4.47	6.31				5.39	6.31	4.47	1.301	2.2
野比	19980531	19：26	14	4.39	4.84				4.615	4.84	4.39	0.318	2.48
野比	19980602	19：43	19	3.61	3.61	5.23	3.3		3.938	5.23.	3.3	0.874	1.1
野比	19980602	19：45	19	5.71	5.33				5.52	5.71	5.33	0.269	1.25
野比	19980608	19：28	15	5	5.66	5.38			5.347	5.66	5	0.331	2.56
野比	19980608	19：28	15	4.48					4.48	4.48	4.48		2.35
野比	19980608	19：28	15	4.6					4.6	4.6	4.6		2.15
野比	19980608	19：30	15	4.99	5.31				5.15	5.31	4.99	0.226	2.82
野比	19980610	19：21	15.4	4	3.8	3.93	3.72		3.863	4	3.72	0.126	2.34
野比	19980610	19：28	18.4	4.86	4.73				4.795	4.86	4.73	0.092	2.76
野比	19990526	19：42	18	5.12					5.12	5.12	5.12		2.44
汿比	19990526	19：43	18	3.96	3.96	4.78			4.233	4.78	3.96	0.473	2.54
汿比	19990526	20：00	18	4.54	2.89	4.54			3.99	4.54	2.89	0.953	1.43
野比	19990526	20：04	18	3.64	4.34	4.63			4.203	4.63	3.64	0.509	1.42
野比	19990527	19：25		4.22	4.56	4.43			4.403	4.56	4.22	0.172	2.4
野比	19990610	20：00		4.3	5.94	5.94			5.393	5.94	4.3	0.947	2
野比	19990610	20：05	19.3	4.58	4.44	4.44			4.487	4.58	4.44	0.081	
野比	19990610	20：05	19.3	2.22	1.56				1.89	2.22	1.56	0.467	
野比	19990610	20：16	19.3	3.59	4.34	5.69			4.54	5.69	3.59	1.064	1.96
野比	19990611	19：28	18.7	5.56	3.25	3.13			3.98	5.56	3.13	1.37	
野比	19990612	19：29	21.3	4.45	4.53	4.53			4.503	4.53	4.45	0.046	2.05
野比	19990612	19：30	21.3	3.82	4.06	4.06			3.98	4.06	3.82	0.139	2.08
汿比	19990612	19：43	21.3	3.19	3.56	3.56	4.34		3.663	4.34	3.19	0.484	1.865
野比	19990612	20：03	21.3	4.09	3.67	5.12			4.293	5.12	3.67	0.746	1.72
野比				3.9	3.5				3.7	3.9	3.5	0.283	1.4
野比				3.9	3.8	3.3	3.3		3.575	3.9	3.3	0.32	1.77
野比				2.57	2.99	4.08			3.213	4.08	2.57	0.779	2.59
野比				5.14	4.94				5.04	5.14	4.94	0.141	2.6
長沢	20000606	19：46		4.84					4.84	4.84	4.84		2.35
引橋	19930610	19：40	20.5	4.54	4.87	4.37			4.593	4.87	4.37	0.254	2.35
引橋	19930610	19：45	20.5	4.89					4.89	4.89	4.89		2.25
引橋	19930610	19：48	20.5	4.66	5	4.54			4.733	5	4.54	0.239	2.68
引橋	19970618	19：30	21	5.36	5.59				5.475	5.59	5.36	0.163	2.915
引橋	19970618	19：30	21	6.93					6.93	6.93	6.93		1.9
山中町	19980530	19：27	21.8	2.69					2.69	2.69	2.69		1.38
山中町	19980530	19：31	21.8	3.3	4.63	3.54			3.823	4.63	3.3	0.709	2.18
山中町	19980530	19：40	21.8	4.01	3.84	3.84	3.84		3.883	4.01	3.84	0.085	1.94
山中町	19980530	19：33	21.8	3.64	3.64	3.65			3.643	3.65	3.64	0.006	1.98
名草川			4.17	7.26			2.26		5.72	7.26	4.17		
名草川			5.83				3.45		5.83	5.83	5.83		
小野川	19850712		23.5	6.4	5.91				6.155	6.4	5.91	0.346	1.3
小野川	19870712		23.5	4.4	4.63				4.515	4.63	4.4	0.163	1.42
小野川	19870712		23.5	4.06	3.84	3.4			3.767	4.06	3.4	0.336	1.13
小野川	19870712		23.5	3.84	3.73	3.73			3.767	3.84	3.73	0.064	1.15
湯瀬	19850712			3.71	4.13	4.13			3.99	4.13	3.71	0.242	2.8
東和	19850708	20：40	16	3.98	4.25	4.19	4.43		4.213	4.43	3.98	0.186	1.65
東和	19850708	20：40	16	3.73	4.08				3.905	4.08	3.73	0.247	1.89
東和	19850708	20：40		3.8	4.96				4.38	4.96	3.8	0.82	2.45
東和	19850708	20：40	16	3.75	3.53				3.64	3.75	3.53	0.156	2
東和	19850708	20：40	16	4.12	4.11				4.115	4.12	4.11	0.007	2.36
釜石	19940714	20：00		2.6	2.5	3.03	2.9	2.56	2.718	3.03	2.5	0.233	1.53
釜石	19940714	20：00		3.39	2.69				3	3.39	2.69		1.74

日の生息状況は次の通りであった。
19 ： 19 半月 曇 $22.9^{\circ} \mathrm{C}$
19：44 1 個体発光
19：54 20個体発光
20：30 ヒメボタル発光。
0：12 200 個体同時明滅。
同日における雄の飛翔発光パターンは以下の通りであった。
$20: 53 \quad 22.5^{\circ} \mathrm{C} \quad \mathrm{I}=1.72$ 秒（ $\mathrm{n}=6, \mathrm{~s}=0.01$ ），D
1.19 秒（第 13 図－10），別個体では $\mathrm{I}=1.9$ 秒
（ $\mathrm{n}=7, \mathrm{~s}=0$ ）であった。
山口県豊浦郡豊田町江良川
1984年6月25日 気温 $25^{\circ} \mathrm{C}$
川幅は約 5 m ，水深約 20 cm ，川底は砂礫でカ ワニナの生息密度はきわめて高かった。ゲンジボ タルの生息密度は高く，明瞭な集団同時明滅が観察できた。同日の発光パターンは以下の通りで あった。

20：30 I は平均 1.54 秒（ $\mathrm{n}=5, \mathrm{~s}=0.03$ ），D は 0.78 秒（第 13 図－11）。別個体ではIが 1.51 秒（ $\mathrm{n}=6$ ， $\mathrm{S}=0$ ），Dは 0.65 秒。

島根県隠岐

1991年6月25日
水道水源から流れる河川であり，川幅 20 m ，河川敷にはヨシが繁茂していた。ゲンジボタルはヨ シの上空を飛翔し，明瞭な集団同時明滅が観察で きた。生息密度は高かった。同日の発光パターン は以下の通りであった。

20：17 I は平均1．77秒（ $\mathrm{n}=3, \mathrm{~s}=0$ ），Dは 0.72秒。
20：29 I は平均 1.71 秒（ $\mathrm{n}=4, \mathrm{~s}=0.05$ ），Dは
0.58 秒（第 13 図－12）。

兵庫県美方郡温泉町青下（標高約 300）
2000年7月29日
2個体飛翔発光したのみで，生息個体数はきわ めて少なかった。これらの個体の生息環境がど の水系であるのかは，確認できなかつた。発光パ ターンは以下の通りであった。

21：30 I は1．33秒（n＝4，s＝0．16），Dは1．18秒（第 13 図－13）。

京都市清滝川

1983年6月28日 $21^{\circ} \mathrm{C}$
深い渓谷を流れる河川であり，川幅約 30 m ，水深は深いところでは 2 m 以上ある。岸辺は岩 が露出するところが多く，苔が生える場所では雌 の集団産卵行動が観察できた。

生息個体数は多く，明瞭な集団同時明滅が観察 できた。同日の雄の飛翔発光パターンは以下の通りであった。

Iは平均 1.98 秒（ $\mathrm{n}=4, \mathrm{~s}=0$ ），Dは 0.88 秒（第 13 図－14）。別の個体では I が平均 1.67 秒（ $n=6$ ， $\mathrm{s}=0.12$ ），Dは 0.6 秒。
1983年7月2日
雄の探雌飛翔発光行動が最盛期を越すと，雌が連続光を放って水面上約 1 m を飛翔した。雌は岸辺の岩の苔（水面から約 1 m ）にとまり，特有 な光を放つた。この光に別の雌個体が集まり，集団となった。これらの雌は苔に産卵した。1個体 の雌の発光パターンは次のとおりであった。
発光間隔は平均して2．3秒（ $\mathrm{n}=6, \mathrm{~s}=0.2$ ） D は1，14秒。

複数個体の光を同時に受光して得た結果はIが

平均して 1.24 秒（ $\mathrm{n}=6, \mathrm{~s}=0.31$ ）。

新潟県糸魚川市

1986年6月28日
川幅約 7 m ，砂礫質の川底であった。飛翔発光個体数は約 100 であり，明膫な集団同時明滅が見られた。同日の雄の飛翔発光パターンは以下の通りであった。
Iは平均 1.83 秒（ $\mathrm{n}=4, \mathrm{~s}=0.09$ ）， D は 0.77 秒（第 13図－15）。
別の個体ではIが 1.88 秒（ $\mathrm{n}=6, \mathrm{~s}=0.12$ ），Dは 0.87秒。
更に別個体では I が 1.95 秒（ $\mathrm{n}=4, \mathrm{~s}=0.09$ ）。

岐阜県多治見市

1994年6月20気温 $21.8^{\circ} \mathrm{C}$ 。
川幅約 4 m ，片側には樹木が植栽され，他方 は歩道を隔てて水田が耕作されている。水深 20 cm ，川底は砂磁である。集団同時明滅はやや不明瞭であった。同地周辺にはオバボタルやムネク リイロボタル幼虫の生息を確認。ヘイケボタルも 1 個体飛翔発光。同日の雄の飛翔発光パターンは以下の通りであった。
$20: 17 \quad 18.5^{\circ} \mathrm{C}$ I は平均 2.22 秒 $(\mathrm{n}=3, \mathrm{~s}=0)$ ， Dは1．18秒（第13図－16）。
当日の夕方まで激しい降雨であったが，雨は止み夜半には半月となった。

長野県辰野町

1981年7月4日 気温 $20^{\circ} \mathrm{C}$
川幅約 1 m の古い用水路に生息し，水深約 20 cm ，片側は山林，他方は水田が耕作されていた。 ゲンジボタルは放流によって増殖されており，飛翔発光個体数は数百以上であった。水路際の植物 の葉にとまっていた成虫は19：30以降に発光開始して，次第に飛翔発光した。深夜には水路際の木杭に生えた苔に雌が飛来し，数個体の集団を形成して産卵行動が見られた。同日の雄の飛翔発光 パターンは次の通りであった。

19：40Iは平均1．87秒（ $\mathrm{n}=6, \mathrm{~s}=0.12$ ）Dは0．93秒（第13図－17）。
長野県茅野市宮川（標高 950 m ）
1997年7月20日

標高約 950 m にある水田の用水路に生息す る。水路の片側は山林，他方は水田が耕作されて いる。水路はほとんど樹木に被われて，夏季は少 ない日照量である。河川底は礫であり，水温は $14-15^{\circ} \mathrm{C}$ で低い。ゲンジボタルは数十個体発生し たが，個体密度が低く，また同調性も低かった。飛翔移動距離は約 60 m であった。同地の時刻と照度変化気温の測定結果は資料2のとおりである。 1993年7月23日 $20.5^{\circ} \mathrm{C}$

同日の雄の飛翔発光パターンは次の通りであっ た。
$19: 30$ I は平均 4.07 秒（ $\mathrm{n}=3, \mathrm{~s}=0.06$ ）， D は 0.94 秒。
19：37 Iは平均 3.55 秒（ $\mathrm{n}=3$ ）， $\mathrm{D}=0.92$ 秒。
19：47 I は平均 3.57 秒（ $\mathrm{n}=4, \mathrm{~s}=0.57$ ），D は 0.93 秒。
$19: 55$ I は平均 3.92 秒（ $\mathrm{n}=3, \mathrm{~s}=0.54$ ），D は 0.83 秒。
20：07 I は平均 3.61 秒（ $\mathrm{n}=4, \mathrm{~s}=0$ ），D は 0.99 秒（第 13 図－18）。

23：05 $14.9^{\circ} \mathrm{C}$ 深夜に気温低下した。
$23: 16 \quad 16^{\circ} \mathrm{C}$
$0: 00 \quad 15.1^{\circ} \mathrm{C}$ 湿度 78%
$1: 00 \quad 15.5^{\circ} \mathrm{C}$ 湿度 81%

新潟県長岡市成願寺温泉

1985年6月26日
川幅約 5 m ，水深は 20 cm 前後，川底は砂磁 であった。片側は旅館，他方は山林で，成虫は約 30 個体飛翔発光した。同時明滅がみられたが，同調性は低かった。同日の雄の飛翔発光パターン は以下の通りであった。

19：45 I は平均 2.65 秒（ $\mathrm{n}=6, \mathrm{~s}=0.08$ ），D は 0.86 秒（第 13 図－19）。

19：50 Iは平均 2.5 秒（ $\mathrm{n}=3$ ），Dは 0.89 秒。

新潟県越路町東谷

山間の水田の用水路に生息し，川幅は約 1 m前後であった。水路は樹木で被われているとこ ろが多かった。同日の雄の飛翔発光パターンは次の通りであった。

Iは平均 2.16 秒（ $\mathrm{n}=4, \mathrm{~s}=0.17$ ），Dは 0.82 秒（第

13図－20）。
別個体ではI が平均 1.97 秒（ $\mathrm{n}=3$ ），D は 0.93 秒。新潟県越路町

1995年6月16日

山林に囲まれた，なだらかな地形に耕作され た水田の用水路に生息する。水路川側は樹木が生え，成虫の休息場所となっている。発光個体数 は数個体であり少ない。水田にはヘイケボタル が飛翔発光した。同日の雄の飛翔発光パターン は次の通りであった

17：53 $21.3^{\circ} \mathrm{C} \quad$ Iは平均 3.94 秒（ $\mathrm{n}=2$ ）
（第13図－21）。

愛知県豊橋市

2000年6月4日
川幅約10 mで護岸済みの河川。川の両側は水田が耕作され，ゲンジボタルは川面を数十個体以上が飛翔発光し，同時明滅したが，同調性は良好 ではなかった。車などによる人工照明の影響が あった。同日の雄の飛翔発光パターンは以下の通りであった。

20：00 I は平均 4.85 秒，Dは 2.51 秒（ $\mathrm{n}=7$ ， $\mathrm{s}=0.4$ ）（第 13 図－22）。

山梨県下部町

人家が散在する谷を流れる川幅約 7 m の河川 に生息する。観察地は片側が水田，他方は山林に接している。自動車の人工照明の影響を受ける。水質は冨栄養化が進んでいるが，ヨシなどが河川敷に繁茂し，支流も流れ込むので，カワニナの繁殖は良好であり，ゲンジボタルも数百個体以上発光した。同時明滅の同調性は低かった。水田には ヘイケボタルは飛翔発光した。発光パターンは以下の通りであった。
1986年6月16日
21：06 $20^{\circ} \mathrm{C}$ ．Iは平均 4.2 秒，Dは平均 1.58秒（第 13 図－23）。
21：06 I は平均 3.63 秒，Dは平均 1.19 秒。 1987年6月15日

19：30 18 ${ }^{\circ} \mathrm{C}$ 雨－晴
$0: 00$ 余り飛ばない

静岡県芝川町

1987年6月27日
山間の水田用水路であり，川幅は 1 m であっ た。低木と草で水路は被われているが部分的に水面が見える。成虫は十数個体飛翔発光し，同意明滅がみられたが，同調性は低かった。同日の雄 の飛翔発光パターンは次の通りであった。

19：45 Iの平均は 2.83 秒（ $\mathrm{n}=3$ ）， D は 0.12秒（第 13 図－24）。
$19: 49$ Iの平均は 2.84 秒（ $\mathrm{n}=3$ ），Dは 0.7 秒。 19：50 Iの平均は3．0秒（ $\mathrm{n}=6, \mathrm{~s}=0.07$ ）， D は 0.98 秒。
19：57 I の平均は 3.22 秒（ $\mathrm{n}=4, \mathrm{~s}=0.04$ ）， D は 1.78 秒。

神奈川県横須賀市野比

低い丘陵に囲まれた水田の用水路とその源流域，および国立病院構内を流れる中下流域の護岸済み河川に生息する。中下流域は川幅 2 m で流程約 200 m ，水田際の水路は川幅約 1 m で未護岸水路であり， 70 m ほどの流程である。上流域 は約70 mほどで伏流水となり，急傾斜の山林と なる。成虫発生は下流域から次第に上流域に移った。1984年から2000年に実施した同地に おける発生状況•照度•気温などは以下の通りで あった。
1984年6月20日 水田脇水路
Iは平均 3.20 秒（ $\mathrm{n}=5, \mathrm{~s}=0.40$ ），D は 1.36 秒。 1986年6月 $13 \sim 15$ 日における観察結果は資料 3に示した。
1987年6月24日 水田脇の水路
19：29 発光
19：47 カエル鳴く
1989年5月26日 $20: 04$（第 9 図－16）。
1989年6月3日 19：30（第9図－15）。
1990年6月3日 水田脇の水路
20：50 $19^{\circ} \mathrm{C} \quad 3$ 個体発光
19：39 Iは平均 4.24 秒（ $\mathrm{n}=3$ ），D は 2.04 秒 （第9図－15）。

19：40 Iは 4.31 秒，Dは 1.48 秒。
19：43 Iは平均4．44秒（ $\mathrm{n}=2$ ），Dは1．65秒。 1992年6月6日 $22^{\circ} \mathrm{C}$ 水田脇の水路

25 個体発光。ヘイケボタル 3 個体発光 1993年6月6日 量 無風

19：30～19：50 中流域 2 個体 1993年6月10日 $19.5^{\circ} \mathrm{C} \quad 5$ 個体
1993年6月13日 $20: 00 \quad 16^{\circ} \mathrm{C} \quad 3$ 個体 1993年6月15日 $18.5^{\circ} \mathrm{C}$ 曇
1993年6月1日 中流域
19：30～19：50 $17^{\circ} \mathrm{C}$ 半月 晴 発光見ら れない
1994年6月17日 下流域
19：35 葉に静止して発光していた雄のI は平均 4.36 秒（ $\mathrm{n}=3, \mathrm{~s}=0.51$ ），Dは 1.95 秒。

19：41 I は平均 4.16 秒（ $\mathrm{n}=4, \mathrm{~s}=1.28$ ）， D は 1.82 秒（第 14 図－1）。

1997年6月24日 $20^{\circ} \mathrm{C}$ 下流域
19：57 I は平均4．3秒（ $\mathrm{n}=3$ ），D は 1.6 秒。
20：06 I は平均 3.86 秒（ $\mathrm{n}=2$ ），D は秒（第 9図－14）。
1997年5月26日の照度と気温の関係を資料4に示す。
1998年5月21日 $\quad 17.7^{\circ} \mathrm{C}$ 水田脇水路
水田に 4 個体発光。人工照明の影響が大きい。 アマガエル鳴く。例年より 2 週間ほど早く出現。
1998年5月23日 下流域
19：41 Iは平均 4.28 秒（ $\mathrm{n}=4, \mathrm{~s}=0.39$ ），Dは 1.59 秒。

1998年は例年より2週間早い。
1998年5月26日 下流域における発光行動•照度•気温を資料5に発光パターンの経時変化を第10図に示す。
Iは平均 6.04 秒（ $\mathrm{n}=3$ ），D は 2.1 秒。
1998年5月25日 $20-21^{\circ} \mathrm{C}$ 下流～中流域 20：10 活動最盛時刻を過ぎたためかほとん どが葉に止まって発光していた。約 100 個体 の発光数を目視した。水田脇の水路には 13 個体発光。鏡田谷戸には 3 個体発光を確認した。 1998年5月27日における発光行動•照度•気温は（資料6，第 10 図）に示す。
1998年5月27日の雄の飛翔発光パターンは

次の通りであった。
19：18 $15^{\circ} \mathrm{C}$ Iは 4.69 秒， D は 2.40 秒。
19：21 Iは4．18秒，Dは2．68秒。
$19: 27 \quad 14^{\circ} \mathrm{C} \quad$ Iは平均 4.51 （ $\mathrm{n}=2$ ），Dは 1.95
秒。
20：00 $15^{\circ} \mathrm{C}$ Iは 5.53 秒，Dは 3.12 秒。
20： $16 \quad 15^{\circ} \mathrm{C}$ Iは 4.70 秒，Dは 2.5 秒。 1998年5月28日は前日よりも気温が上昇した が，飛翔発光個体数は少なかった。
1998年5月28日における発光行動•照度•気温は資料7に示す。
1998年5月28日の雄の飛翔発光パターンは次の通りであった。

19：30 19．6 ${ }^{\circ} \mathrm{C}$ Iは平均 4.01 秒（ $\mathrm{n}=2$ ）， D は 2.46 秒であった（第 9 図－9）。

19： $42 \quad 20.1^{\circ} \mathrm{C}$ Iは 4.27 秒，Dは 2.22 秒。 1998年5月29日 水田脇水路

上流域に近い水田脇水路は人工照明の影響が強く，飛翔発光個体は少なかった。
20：10 水田に 10 個体飛翔。カエルなく。
20：45 発光おさまる。下流には 5 個体飛翔。
19：51飛翔活動止む。
19：575個体飛翔。
20：11 $19.7^{\circ} \mathrm{C} \quad 10$ 個体低空飛翔。
20：10 水田に 10 個体飛翔。アオガエル鳴 く。
20：45 発光活動止む。
1998年5月31日 水田脇
$19: 25 \quad 18.7^{\circ} \mathrm{C}$
19：18 3 個体飛翔発光
$19: 30 \quad 19.2^{\circ} \mathrm{C} \quad 20$ 個体飛翔下流域には 30個体飛翔
20：30 中流域の水田水 30 個体飛翔同日 の発光パターンは次の通りであった。
19：26 18．7 ${ }^{\circ} \mathrm{C}$ I は平均 4.62 秒（ $\mathrm{n}=2$ ）は 2.43 秒（第 9 図－10）。

19：30 $19.2^{\circ} \mathrm{C}$ I は平均 5.39 秒（ $\mathrm{n}=2$ ）， D は 2.2 秒。

1998年6月1日の発光行動•照度•気温は資料 8 に示す。

1998年6月2日 水田脇水路～上流域
19：20 $\quad 19.5^{\circ} \mathrm{C} \quad 0.05 \mathrm{~lx} \quad 1$ 個体飛翔開始
19： $25 \quad 19.0^{\circ} \mathrm{C} \quad 0.03 \mathrm{~lx} 5$ 個体飛翔 無風
19：48 $30 \sim 50$ 個体飛翔発光
20：11 飛翔活動止む
20：27 水田 20 個体発光。前日よりも発光個体数が多い。
20：40 上流域 10 個体止まって発光
同日の雄の飛翔発光パターンは以下の通りで あった。
19： 43 19．0 $0^{\circ} \mathrm{C}$ Iは平均 3.94 秒（ $\mathrm{n}=4, \mathrm{~s}=0.87$ ），
Dは1．1秒（第9図－11）。
$19: 45 \quad 19.0^{\circ} \mathrm{C}$ I は平均 5.52 秒（ $\mathrm{n}=2$ ）。 1998年6月5日

発光活動は上流域に移り，下流域は発生後期と なり，個体数が減少した。

19：30 $17.1^{\circ} \mathrm{C}$ 上流域
19：20 30 個体飛翔発光
20：20 下流域は全く発光していない 1998年6月8日の上流域における生息状況は気温は低下したが， 150 個体以上飛翔発光が確認で きた（資料 9）。同日の雄の飛翔発光パターンは以下の通りであった。

19：28 $15.0^{\circ} \mathrm{C}$ Iは平均 5.35 秒（ $\mathrm{n}=3$ ），Dは 2.56 秒。

19：28 $15.0^{\circ} \mathrm{C}$ Iは 4.48 秒，Dは 2.35 秒 （第9図－12）。

19：28 $15.0^{\circ} \mathrm{C}$ Iは 4.6 秒，Dは 2.15 秒。 1998年6月9日 雨 上流域

上流域の生息状況は以下の通りであった。前日に比較すると飛翔範囲が広がり，高く飛翔し た。雨天であったが，活動は抑制されなかった。

時刻	照度 (lx)	気温 $\left.{ }^{\circ} \mathrm{C}\right)$	
$19: 10$	0.14	18.0	
$19: 12$	0.04	17.8	100 個体飛翔発光

高く舞い上がる

1998年6月10日 17：00まで雨 上流域雨上がりの夜であったが，前日よりも飛翔発光

個体数は減少した。葉上で休息する個体が多 かった。時刻と発光行動は以下の通りであった。

19：05 $18.4^{\circ} \mathrm{C}$ 飛翔発光 上流
19：12 40 個体飛翔発光
19：40
飛翔活動止む。葉上で発
光同日の雄の静止発光パターンは以下の通り
であった。
19：21 $18.4^{\circ} \mathrm{C}$ 葉に静止して発光する雌の Iは平均 3.86 秒（ $\mathrm{n}=4, ~ \mathrm{~s}=0.13$ ），D は 2.34 秒（第 14図－2）。

19：28 $18.4^{\circ} \mathrm{C} \quad \mathrm{I}$ は平均 4.80 秒（ $\mathrm{n}=2$ ），D は 2.76 秒（第 9 図－13）。

1998年6月17日 約400 m隔たって存在する

隣接する谷戸の放置された水田と用水路には ゲンジボタルとへイケイボタルが混生していた。 20：00には約20個体発光。ゲンジボタルとへ イケボタルが混生していた。
1999年5月17日 晴 $12.0^{\circ} \mathrm{C}$ 水田脇水路
20：15 アオガエル鳴く。発光しない。 1999年5月19日 日中雨 夕方に止む。中流域
～水田脇水路
同日の生息状況は以下の通りであった。
$19: 25 \quad 19.5^{\circ} \mathrm{C}$ カエル鳴く。水田 $17.5^{\circ} \mathrm{C}$
発光しない。
19：35 $17.8^{\circ} \mathrm{C}$ 中流域に 1 個体発光。
$19: 43 \quad 19.5^{\circ} \mathrm{C}$
19： $45 \quad 18.4^{\circ} \mathrm{C} \quad 1 \delta^{\mathrm{r}}, 1$ 우発光。 1 個体飛翔発光した。
1999年5月21日下流域 $15.5^{\circ} \mathrm{C}$
同日の生息状況は次の通りであった。
$19: 3030$ 個体発光
20：00 20個体発光
1999年5月22日 下流域
気温が低下し， $19: 55$ 以降にはほとんど発光 を休止した。

19：26 はだ寒く，やや風ある。
19：39 18．1 ${ }^{\circ} \mathrm{C} \quad 15$ 個体飛翔発光。
19：10 30個体飛翔発光。
19：55 $\quad 17.7^{\circ} \mathrm{C}$ ほとんど飛翔休止。刺激で発光する。 40 個体止まって発光。

20：00 $\quad 17.0^{\circ} \mathrm{C}$
$20: 05$ 上流域で 12 個体発光。 2 個体飛翔。 1999年5月25日 薄曇 下流域周期的に同時明滅行動が繰り返された。
$19: 40 \quad 17.6^{\circ} \mathrm{C}$ 下流域 70 個体発光。月が出ているが雲はかぶっている。

19：50 同時明滅する。以後不規則になる。弱 く連続して発光する個体や，葉にとまって強く発光する個体がいた。
1999年5月26日 $18^{\circ} \mathrm{C}$ 。下流域
同日における雄の発光パターンは以下の通り であった。

19： 42 Iは 5.12 秒，Dは 2.44 秒。
19：43 I は平均 4.23 秒（ $\mathrm{n}=3$ ），Dは 2.54 秒。
20：00 I は平均3．99秒（ $\mathrm{n}=3$ ），Dは 1.43 秒。
20：04 Iは平均 4.20 秒（ $\mathrm{n}=3$ ），Dは 1.42 秒。 1999年5月27日 午前中は強風。下流域

夕刻には風が止み，飛翔発光行動が観察でき た。川岸の草が生えた部分に密度高く発光する個体が観察できた。

19：44 下流域によく飛ぶ。
20：03 一部の草むらで集合して発光してい た。

20：35 飛翔活動やむ。
20：37 時々飛翔発光して同調する。
同日の雄の飛翔発光パターンは次の通りで あった。

19：25 I は平均 4.40 秒（ $\mathrm{n}=3$ ），D は 2.4 秒。 1999年6月3日 上流域

樹木が被い茂った下の川面を飛翔発光した。飛翔移動範囲は約 5 m で狭かった。

19：13飛翔発光開始。
19：18 木の暗闇で多数発光。
19：27 $18.4^{\circ} \mathrm{C}$ 多く飛翔発光する。
$19: 41 \quad 18.6^{\circ} \mathrm{C}$
$19: 54 \quad 18.1^{\circ} \mathrm{C}$
20：09 飛翔行動範囲が広がる。個体数減少。
20：30 飛翔活動休止。
20：41 $18.7^{\circ} \mathrm{C}$ 。水田脇に 3 個体発光。 1999年6月9日 上流域

19：25 20個体発光。
19：40 飛翔発光。
19：56 $15.3^{\circ} \mathrm{C}$ 飛翔個体減少。
1999年6月10日 $19.3^{\circ} \mathrm{C}$ 上流域
19：20 飛翔発光開始。
$19: 27 \quad 18.8^{\circ} \mathrm{C}$
$19: 59 \quad 19.3^{\circ} \mathrm{C}$
20：05 生息地に飼育によって得た雌 1 個体 を透明なプラスチック容器に入れて探雌飛翔し ている雄の下においた結果，雄が接近して雄と雌 の発光コミュニケーションが観察された。この ときの雄のIは4．49秒（ $\mathrm{n}=3$ ）であった。一方雌は雄に応答したが不規則な間隔であった。雄の発光に対して遅れを伴ったが，その時間は 2.22 秒 と 1.56 秒であった。
1999年6月11日 上流域
19：20 飛翔発光。
$19: 30 \quad 21.3^{\circ} \mathrm{C}$
$19: 35 \quad 19.5^{\circ} \mathrm{C}$
19：38 水温 $15.7^{\circ} \mathrm{C}$
1999年6月12日 $21.3^{\circ} \mathrm{C}$ 上流域
同日の雄の飛翔発光パターンは次の通りで あった。

19：29 I は平均 4.50 秒（ $\mathrm{n}=3$ ），Dは 2.05 秒。
19：30 I は平均 3.98 秒（ $\mathrm{n}=3$ ），Dは 2.08 秒。
19：43 I は平均 3.66 秒（ $\mathrm{n}=4, \mathrm{~s}=0.48$ ），Dは 1.87 秒。

20：00 I は平均 5.39 秒（ $\mathrm{n}=3$ ），Dは 2.00 秒。
20：03 I は平均 4.29 秒（ $\mathrm{n}=3$ ），Dは1．72秒。
20：16 I は 4.54 秒（ $\mathrm{n}=3$ ），D は 1.96 秒。
1999年6月13日 上流域
同日における生息状況は資料10に示した。発光開始時刻は $18: 58$ であり，照度は 0.08 lx で あった。同地における発光パターンの経時変化 は第9図の通りであった。

神奈川県横須賀市山中町

川幅約 3 m で，護岸工事されてから数ヶ月経 た河川である。一方の川岸には人家が散在し，他方は急峻な山林となっている。観察地は支流が合流する地点であり，人工照明の影響があった。

1998 年 5 月 30 日の生息地の照度•気温は資料 11に示した。当日は数個体が発光するのみで，飛翔個体は $1 \sim 2$ 個体であった。発光開始時刻は 19：28であり， 0.02 lx であった。

当日の雄の飛翔発光パターンは以下の通りで あった。

19：27 $21.5^{\circ} \mathrm{C}$ Iは 2.69 秒，Dは 1.38 秒。
$19: 31 \quad 21.8^{\circ} \mathrm{C}$ Iは平均 3.82 秒（ $\mathrm{n}=3$ ），Dは 2.13 秒。

19：33 $21.8^{\circ} \mathrm{C}$ Iは平均 3.64 秒（ $\mathrm{n}=2$ ），Dは 1.98 秒。

19： $4021.8^{\circ} \mathrm{C}$ I は平均 3.88 秒（ $\mathrm{n}=4, \mathrm{~s}=$ 0．09），D は 1.94 秒（第 13 図－27）。

神奈川県横須賀市秋谷関根川

1989年6月20日
川幅約 2 m ，水深 10 cm の河川であり，川底 は砂礫であった。川岸の一方は道路を隔てて水田があり，他方は山林となっていた。

発光個体数は約 10 個体であり，発光の同調性 は低かった。雄の飛翔発光パターンは19：50に おいてIは 6.22 秒，D は 2.9 秒（第 13 図－28）。
神奈川県横須賀市長沢杉釜の池
川幅約 1 m の農業用水路であり，水源は沢か らの涌き水と灌㲘用水池の水であった。両側は山林に囲まれて，長い間水田が放棄された湿地と なって，ガマやヨシ，ハンゲショウなどが繁茂し て，飛翔空間は狭かった。1992年6月20日の観察では，発光個体数は約 25 個体であり，同調性 は低かった。同地の暗い湿地にはヘイケボタル の幼虫が 10 個体発光していた。

神奈川県横須賀市長沢

水田が耕作されてきた谷戸に流れる幅約 1 m の用水路に生息し，源流域には古い堰がある。観察地は水田が放棄されて，ほとんど陸化してい る。水路周辺はヨシなどが繁茂し水路を被って いた。
2000 年 6 月 6 日
飛翔発光個体数は7個体前後であり，発光周期 が同調する時間は短かった。

19：46 Iは4．84秒，Dは 2.35 秒であった（第

13 図－25）。

神奈川県逗子市池子

軍施設として半世紀以上に渡って一般の立ち入りが制限されてきたために，谷戸地形が保全さ れて森や池などが残り，小さな水系にはゲンジボ タルやヘイケボタルが生息していた。調査地点 は池子川とその支流の合流点であり，川幅約 3 m ，水深 10 cm の護岸された河川であった。護岸 は古く，部分的に両岸から樹木が繁茂して川面を被っていた。ゲンジボタルはこの樹木で被われ た暗い空間と開かれた空間の接点に多く観察で きた。
1992年6月17日 $20^{\circ} \mathrm{C}$
池子川に 60 個体，久木川に 28 個体発光。
1992 年 6 月 22 日 $17^{\circ} \mathrm{C}$
池子川には 40 個体発光，久木川には 15 個体。 1992年6月25日 $16.5^{\circ} \mathrm{C} \quad 15$ 1993年5月31日

池子川合流点 $18^{\circ} \mathrm{C} \quad 23$ 個体発光
1993年6月8日 池子川
雄の飛翔発光パターンは以下の通りであった。 I は平均 4.5 秒（ $\mathrm{n}=3$ ），D は 2.00 秒。
19：26 I は平均 4.56 秒（ $\mathrm{n}=4, \mathrm{~s}=0.44$ ）， D は 1.50 秒。

19：36 Iは平均 3.51 秒（ $\mathrm{n}=3$ ），Dは 1.68 秒。
19：50 I は平均 4.15 秒（ $n=3$ ），D は 1.40 秒 （第13図－26）。
20：17 Iは平均4．51秒（ $\mathrm{n}=3$ ），Dは 2.51 秒。 1993年6月14日 曇 池子川

19：30 $20^{\circ} \mathrm{C}$ 水温 $19^{\circ} \mathrm{C}$ 。合流点 40 個体メ ス 4 個体発光

神奈川県三浦市引橋

水田の用水路として使用されていたが，水田が畑ろなり，その機能を失った。川幅や約 1 m ，片側は山林，他方は畑となっている。水路面には低木が被っているところもあるが，手入れがされて おり，水面に日照良好であり，クレソンが繁茂す る。水源は豊富な地下水であり，ゲンジボタルが生息するのは湧水源より 10 m 範囲である。発光個体数は十数個体であり，同時明滅の同調性は

低かった。
1993年6月7日 気温 $24^{\circ} \mathrm{C} \quad 15$ 個体発光
1993年6月10日 気温 $20.5^{\circ} \mathrm{C} \quad 15$ 個体発光
19：40 I は平均 4.59 秒（ $\mathrm{n}=3$ ），D は 2.35 秒
19：44 I は4．89秒，Dは 2.25 秒（第 13
図－29）。
19：48 I は平均4．73秒（n＝3），Dは2．68秒。 1997年5月25日の発光行動•照度•気温は資料12に示す。
気温が低く，ほとんど飛翔しない。15個体発光。 1987年6月18日

19：25 $21.0^{\circ} \mathrm{C}$
19：29．2個体発光
1997年6月18日
Iは 5.48 秒，Dは2．92秒。
Iは 6.93 秒，Dは 1.90 秒。
神奈川県三浦市小網代
台地の下に形成された谷を流れる水系に生息 する。長い期間，放棄された水田の用水路に生息 する。水路は樹木で被われるが，林床空間は広く ，人工照明は全くない。成虫は水路に沿って飛翔発光したが，飛翔発光個体数は十数個体であつ た。同時明滅の同調性は低かった。
1992年6月12日
$19: 30 \quad 24^{\circ} \mathrm{C} \quad 25$ 個体飛翔発光 クロマド ボタル幼虫発光。
1993年6月17日 曇 やや風あり
$17.8^{\circ} \mathrm{C} 40$ 個体発光
19：34 Iは平均4．23秒（ $\mathrm{n}=4, \mathrm{~s}=0.59$ ），Dは 1.95 秒。

19：36 I は平均 3.87 秒（ $\mathrm{n}=4, \mathrm{~s}=0.31$ ）， D は 1.68 秒（第 13 図－30）。

20：02 I は平均 3.56 秒（ $n=3, s=0.05$ ），Dは 1.75 秒。

20：17 I は平均 3.28 秒（ $\mathrm{n}=3$ ），Dは 1.55 秒。千葉県大原町

水田の用水路であり，生息地は樹木に被われた一角であり，水田に接している。川幅約 2 m で，水路の岸辺の岩には苔が生えている。飛翔発光個体数は数百個体を越えた。

1990年6月10日
19：41 Iは平均4．72秒（ $\mathrm{n}=3$ ），Dは 1.56 秒。 19：45 I は平均5．31秒（ $\mathrm{n}=3$ ），D は 1.76 秒 （第 13 図－31）。
1999年6月14日 $20.6^{\circ} \mathrm{C}$
19：50 ゲンジボタル発光。水田にはヘイケ ボタルが発光。

20：16 ゲンジボタルとへイケボタルが同時 に飛翔発光。

群馬県吾妻郡東村

1985年5月25日
水田の用水路であり，湧水が流れる。川幅約 1 m，クレソンが繁茂して，その根際には大小多数 のカワニナが繁殖していた。生息地は狭いが，飛翔発光個体数は数十個体で，生息道度は高い。同時明滅の同調性は低い。同日の発光パターンは以下の通りであった。

Iは3．75秒，Dは1．62秒（第13図－32），他の個体ではIは3．72秒（ $\mathrm{n}=3$ ），Dは1．62秒。

栃木県足利市

水田の用水路であり川幅は約 1 m ，道路を挟 んで水田があり，反対側は山林となっている。

ヘイケボタルとともに生息し，ゲンジボタル の発光個体数は約 10 個体であり，少なかつた。同時明滅は発光個体数が少なく，見られなかつ た。同日の雄の飛翔発光パターンは次の通りで あった。Iは平均5．72秒，Dは2．26秒（第13図－ 33）。別個体ではIは5．83秒。
山形県米沢市小野川温泉
川幅約 10 m ，川岸には植物が繁茂している。同時明滅の同調性は低くかった。
1985年7月12日 $23.5^{\circ} \mathrm{C}$
I は平均 6.16 秒（ $\mathrm{n}=2$ ）， D は 1.3 秒。
Iは平均 4.52 秒（ $\mathrm{n}=2$ ），Dは1．42秒（第13図－35）。
I は平均 3.78 秒（ $\mathrm{n}=3$ ），Dは1．13秒。
I は平均3．78秒（ $\mathrm{n}=3$ ），Dは1．15秒。
山形県湯瀬町
キャンプ場を流れるせせらぎに生息する。水源は地下水が湧き出しており，豊富である。成虫 は林床空間を飛翔発光したが，個体数は10個体

前後で少なかった。同時明滅の同調性は低かった。 1985年7月12日

Iは 3.99 秒（ $\mathrm{n}=3$ ），D は 2.8 秒（第 13 図－34）。宮城県東和町鱒淵川

川幅約 10 m ，片側は樹木が植栽され，その後 に道路があり，他方は水田が耕作されている。水深は約 40 cm ，水量は豊富である。河川敷には大きな岩や石があり，カワニナが多数見られた。自動車の人工照明の影響を多く受けた。 1985年7月8日 $16^{\circ} \mathrm{C}$

20：40 Iは平均4．21秒（ $\mathrm{n}=4,0.19$ ），Dは1．65秒（第13図－36）。
別個体ではIが平均 3.90 秒（ $\mathrm{n}=2$ ）， D は 1.89 秒。更に別個体では I が平均 4.38 秒（ $\mathrm{n}=2$ ）， D は 2 。 45 秒，この他 I が 3.64 秒（ $\mathrm{n}=2$ ）， D は 2.00 秒， Iが 4.12 秒（ $\mathrm{n}=2$ ），Dは 2.36 秒。
1987年7月4日 $25^{\circ} \mathrm{C}$ 水温 $18.5^{\circ} \mathrm{C}$

岩手県釜石市

川幅約 3 m ，岸辺は低木と草に被われている。飛翔発光数は 100 個体以上であるが同時明滅の同調性は低く，長く続かなかった。 1994年7月14日

20：00 Iは3秒，Dは1．74秒（第13図－37）。
20：02 Iは2．41秒，Dは1．56秒。
20：05 Iは 2.86 秒，Dは1．61秒。
20：05 Iは 2.7 秒，Dは 1.2 秒。
20：10 I は 4.21 秒，Dは 1.49 秒。

青森県弘前市

川幅約 4 m ，護岸済み河川であるが，河川敷 にはヤナギが繁茂し，洲が生じている。片側は道路を挟みリンゴ畑が広がる。発光個体数は数十個体であり，同時明滅の同調性は低い。 1985年7月11日 $23^{\circ} \mathrm{C} \quad 19: 30-20: 00$

I は平均 2.86 秒 n＝2），Dは1．24秒（第 13 図－ 38）。
I は平均 3.52 秒（ $\mathrm{n}=3$ ），Dは 1.04 秒であった。
I は平均 3.33 秒（ $\mathrm{n}=3$ ），D は 1.09 秒。

青森県青森市

川幅約 5 m ，河川敷にはクレソンが生える。飛翔発光個体数は大変少なく，数個体であった。同

時明滅の同調性は低かった。発光パターンは次 の通りであった。
Iは平均 5.15 秒， D は 2.02 秒，別の個体ではIは 5 秒，Dは2．44秒（第13図－39，40）。

発光コミュニケーション

野外の雄とプラスチック容器内の雌：誘引発光シグナルを放っていた雌成虫を透明な円形プ ラスチック容器（直径 3 cm ，高さ 2 cm 内へ入 れて，雄成虫が探雌飛翔する場所へ置いたところ，上空を飛翔する雄がこの雌へ飛翔接近した。雄 は飛翔接近中に数回発光し，雌は雄の発光シグナ ルに対して応答発光した。雌の応答の遅れ時間 は約 $1.2 \sim 1.7$ 秒であり，バラツキが大きく，応答発光のタイミングは厳密でなかった（第14図－ 4，6）。

雄の発光パターンは発光間隔が変化するもの の，基本的には全て同じであり，第9図に示す通 りであり，なだらかなひとつのピークを有する波形であった。しかし，このなだらかな波形が何ら かの原因によってギザギザになる波形も観察され （第9図－8，12），小さな発光ピークがひとつの波形に多数含まれていた。特に，雄の同調発光がず れるときにしばしば見られた。雌の発光パターン は第14図の通りであり，雄に比較して発光間隔•発光持続時間ともに長かった。また，雌発光波形 はギザギザになることはほとんどなく，ひとつの ピークを持つなめらかな波形であった。

発光開始照度と経時変化

横須賀市の生息地におけるゲンジボタルの発光開始照度と経時変化を1998年5月19日～6月 9 日，1999年6月3日～6月13日に観察した結果，18：56～19：45に発光開始し，照度は $0.02 ~ 1 \mathrm{~lx}$ の照度であった（第3表）。5月19日～6月13日までの発光開始時刻には明瞭な差 が認められなかった。発光開始時刻は19：15前後が最も多く，照度は 0.05 lx が多かった。
長崎県対馬•熊本県旭志村•高知県大野見村•長野県茅野市の集団はいずれも $19: 30$ 以降に発光

第14図 ゲンジボタルの発光行動。
1．神奈川県横須賀市野比1994年6月17日 19：35 葉上で発光，2．神奈川県横須賀市野比1998年 6月10日 19：21 葉上で発光する雌，3．長野県茅野市宮川2000年7月10日，21：04葉上で発光（ㅇ ） 4．神奈川県横須賀市野比におけるコミュニケーション時の発光パターン，雄の発光に対する雌の応答発光が一番目と二番目の雄の発光の後半で雌の発光が認められる。5－6．京都府清滝川における雌の集団産卵時に発せられる発光。5は1個体の雌，6は複数個体の発光。7．雌の産卵時における発光パ夕 ーン。京都府清滝川 1983年7月2日 1 個体記録， 8 。同前 複数個体を同時記録。

し，発光開始時刻がやや遅い傾向があるが，照度 には明瞭な相違が見られなかった。飛翔発光活動 の最盛期は約 1 時間でほぼ終えた。しかし，出現期の違いや気象状態の違いによっては $18: 56$ ， 20：30に発光した例もあった（資料参照）。

気温と雄の探雌飛翔発光間隔

神奈川県横須賀市野比の集団について観察し た結果は第 15 図に示した。雄の飛翔発光間隔は気温の低下とともに雄の飛翔発光間隔は長くな る傾向がみられたが，変異幅は大きかった。発光間隔（y）と気温（x）との間には近似式 $y=$ $-0.1085 \mathrm{x}+6.3822\left(\mathrm{R}^{2}=0.1146\right)$ が得られた。

第15図 ゲンジボタルの飛翔発光間隔と気温との関係。
神奈川県横須賀市野比における観察記録 に基づき作成した。

雌の誘引シグナルと雌の応答発光
雌は茎などにとまり，雄を誘う発光シグナル を放っていた。発光間隔は平均4秒であり変動幅 が大きかった。雌の誘引シグナルの発光パター ンは基本的に雄の発光パターンに似るが，発光間隔は長かった。

雌が雄に対しての遅れ時間は一定ではなかっ た。

考 察

各地のゲンジボタルの色彩斑紋パターン

前胸背の斑紋パターンには地域集団内におい て大きな変異が認められる。斑紋パターンを大 きく分類すると十字紋型，錨紋型，弘前の集団に みられる前方斑紋型•痕跡型•無紋型が認めら れる。これらの型には薄紋•太紋•細紋などの変異があり，中央の小紋が円形から一の字•逆三角形などの変異がある。弘前市の集団は個体変異 が大きく，特に前方斑紋型は弘前の集団にのみ認められ興味深い。また，神奈川県秦野市，群馬県吾妻東村，山形県湯瀬町，宮城県東和町，青森

県青森市の集団からは無紋型が認められる。中根（1987）は青森県十和田町で採集された無紋型 の個体に対して亜種 towadaennsis と記載した が，今回の結果では，同一集団内に無紋型以外の個体も認められていることから，無紋型は原亜種の個体変異とすることが妥当と考えられる。 なお，これまでに収集されている無紋型の標本は全て雌個体であった。

各地域集団を比較すると，大きく分けて西に なるほど個体の斑紋は錨紋型や太く濃色の斑紋 である傾向にあるのに対して，東になるに従い薄紋型や痕跡型，無紋型が多く認められる傾向にあ り，地域固有性を反映していると考えられる。し かし，これらの斑紋パターンの固有性は現時点で は発光パターンの特性に対応していない。

外部形態

全国23箇所のゲンジボタル（各 $1 \sim 2$ 個体）の大きさを測定した結果（第1表）からゲンジボタ ル個体の前胸背板の幅（PW）が2．93～4．13 mm （平均 $3.65 \mathrm{~mm}, \mathrm{n}=29, \mathrm{~s}=0.30$ ）と大きさの変異 が大きく，大型は小型の約 1.4 倍，前胸背板の長 さ（PL）では $1.63 \sim 2.34 \mathrm{~mm}$（平均 2.00 mm ， $\mathrm{n}=29$ ， $\mathrm{s}=0.18$ ）であり， PW 同様に約 1.4 倍近く大 きさが異なつている。また，上翅長（EL）では $9.16 ~ 11.77 \mathrm{~mm}$（平均 $10.44 \mathrm{~mm}, \mathrm{n}=27$ ， $\mathrm{s}=0.70$ ）であり，大型は小型の約 1.3 倍，体長（BL） は $10.69 \sim 14.64 \mathrm{~mm}$（平均 $12.86 \mathrm{~mm}, \mathrm{n}=23$ ， $\mathrm{S}=1.09$ ）であり，大型は小型の約1．4倍に達し，個体変異幅が大きい。一方，ゲンジボタル雌個体の前胸背板の幅（PW）が $3.82 ~ 5.21 \mathrm{~mm}$ と大き さの幅が大きく，大型は小型の約1．4倍，前胸背板の長さ（PL）で2．03～3．06 mm であり，PW同様に約 1.5 倍近く大きさが異なり，雄同様に変異幅が大きい。上翅長（EL）では $10.55 ~ 15.39$ mm （平均 $12.75 \mathrm{~mm}, \mathrm{n}=15, \mathrm{~s}=1.40$ ）であり，大型は小型の約1．5倍，体長（BL）は13．88～16．99 mm（平均 $14.80 \mathrm{~mm}, \mathrm{n}=13, \mathrm{~s}=1.05$ ）であり，大型は小型の約 1.2 倍に達し，大きな変異幅があ る。PL／PWの平均値は雄が 0.55 ，雌では 0.51 で

あり，雌の前胸背板は横長であることが確認でき た。PW／ELは雄では 0.35 ，雌では 0.36 で雌雄 ともに同一とみなせる。

一方，地域集団（各 $3 \sim 27$ 個体）の前胸背幅 （PW）と前胸背長（PL）を計測した結果をみると，各集団内においても大きな変異幅があるが，明瞭な形態的特徴は特に認められない。各地域集団のPWとPLの近似式の有意差は低いが，個体変異は大きく，新潟県糸魚川市の集団と岐阜県多治見市の集団は比較的高い有意性を示している。以上の結果から，西日本型と東日本型の形態的な相違や発光パターンとの対応は特に認められな い。

斑紋パターン分布

ゲンジボタルは九州•四国•本州に分布するが，斑紋パターンから分類すると太く明瞭な錨紋型 が九州に，十字紋型が四国•中国•近畿地方，関東以北には薄紋型•無紋型の出現頻度が高い。特 に薄紋型は神奈川県以北に分布し，雌にのみ見出 されており，北上するに従い斑紋が薄れる傾向 がみられる。特に，青森県弘前市の集団は前紋型 が多く，他ではみられない特異な斑紋パターンを示す。また，雄個体に斑紋がほとんど消失したも のがあり，無紋型が見出される可能性が高い。

生息環境

西日本型ゲンジボタルの生息環境の特徴とし て比較的大きな河川に生息して，飛翔空間は東日本に比較すると西日本が広い傾向がある（第19図）。水源は湧水から貯水池まで多様であり，西日本と東日本とにおいて大きな相違が認められ ない。河川底は西日本では砂磁を中心とするが，東日本では砂泥もしくは泥質のところが多い。生息地は東西日本ともに温泉池に多く存在する。西日本では河川岸に樹木がないところで生息し ているところもある。長野県茅野市や静岡県芝川町では水田の用水路に生息し，東日本型ゲンジ ボタルの生息地の環境要素を有する。しかし，西日本型ゲンジボタルは水田の用水路にも生息し，

そうした環境下においても集団産卵行動がみら れるが，東日本ではその例がない。神奈川県横須賀市の生息地では，水路を樹木が被い，飛翔空間 が狭いことが多い。このような環境下ではゲン ジボタルの飛翔行動が抑制されて，同時明滅の同調性が著しく低下する。宮崎県北川町のような幅広い河川では川面の空間があるので，飛翔活動が活発であり，同時明滅の同調性が高く，かつ長時間続く。

発生消長

神奈川県横須賀市野比では過去 10 年間をみる と，6月上旬が発生の最盛期であるが，1998年 は5月中旬に発生して，最盛期が約10日早まっ ており，気象条件によって年変動が大きく影響さ れる。また，同じ水系であっても，下流域が最初 に最盛期を迎え，次第に中流から上流域に移る。下流から上流域まで含めると約20日間発生して いることになる。上流と下流の水温差は約 $1^{\circ} \mathrm{C}$ で あるが，発生期に大きな影響を与えていると推定される。また，上流域ほど樹木に被われた空間 が多くなり，谷地形が狭まり，日照量が低下する ことも一要因となっていると考えられる。隣接 する鏡田谷戸は狭い谷戸地形であり，発生最盛期 は約 2 週間遅れることも以上の考えを支持して いる。他の生息地においても環境条件が個々に異なることから，発生消長は地域環境特性を反映 し，異なっている。

活動習性

神奈川県横須賀市の集団は時間経過に伴う発光パターンの変化は顕著に認められないが（第4表），飛翔発光頻度は21：00以降に著しく低下す る。しかし，西日本，特に九州の集団では飛翔発光行動は $21: 00$ 以降も続く。日没時間の相違が飛翔発光開始時刻に大きく影響を与えていると推定されるが，飛翔活動は横須賀市の集団に比較 して，きわめて活発であり，発光の同調性が高く長時間持続する特徴を有しており，西日本型ゲ ンジボタルの固有性を示している。

活動習性と照度との関係を見ると，発光開始時では約 $0.02 \sim 0.06 \mathrm{~lx}$ であり，肉眼でも周辺環境が認識できる程度の明るさである。横須賀市の生息地では以後，次第に暗くなり，21：00以後は肉眼では環境の空間認識ができなくなり，雄成虫にとっても空間認識ができなくなるために，飛翔活動が抑制されると考えられる。本種の生息環境が開かれているほど飛翔活動が活発であ ることは，閉ざされた環境よりも明るいためと考 えられる（第3表）。従って，探雌行動時に空間認知する上で暗すぎると，飛翔活動が抑制され ると考えられる。横須賀市野比の上流は樹木が繁茂し，林床空間が形成されているので，日没後 に暗くなるのが早い。同地では19：05前後から ゲンジボタルが発光を開始したことは以上のこ とを裏付けている。活動を収束するのも暗くな るのが早いために，20：00には飛翔発光活動が止む。

一方，幅広い大きな河川を生息の場とする西日本型ゲンジボタルは緯度の違いから日没時間が横須賀市とは大きく異なり，ゲンジボタルの活動時間もきわめて長い。川面空間が十分確保され ているために，水辺は明るく，それだけ活動時間 を延長できたものと推定できる。

ゲンジボタルにきわめて類似している沖縄県久米島に分布するクメジマボタルは生息河川が樹木で被われた暗い環境に生息することが多く，西日本に分布するにもかかわらず，活動時間はむ しろ東日本型ゲンジボタルに似ている（大場ほか， 1994；沖縄県教育委員会，1997）。

また産卵行動が早朝のごく短い時間（照度が 0.05 lx 前後）に限定されることからも生息環境 の明るさの状況が大きく活動習性に影響してい るものと推定できる。

発光パターン

雄および雃の発光パターンは静止時，飛翔時と もに肉眼による観察では単一のピークを有する。 しかし，コンピュータによる波形解析を行うと，雄の探雌飛翔行動時における発光パターンのな

かには多数の小ピークから構成されている波形 が認められることがある（第 13 図 $25,26,29,31$ ， $34,40)$ 。この小ピーク間は約 0.28 秒以下であり，自由にこの小ピークを延ばして発光間隔を調整 していると考えられる。特にゲンジボタルは集団となって発光期を同調させる習性があり （OHBA，1984），この小ピークを発現，抑制する ことによって同調を調整しているものと考えら れる。従って，ゲンジボタルの波形は通常は滑ら かであるが，小ピークの間隔が基本的に内在さ れた固有な発光周期であると考えられる。雌の発光パターンも同様であると考えられる。雄が発光パターンを自在に変化させることができる のは小ピークを任意に立ち上げることが可能で あるためと考えられる。飛翔時における雄の発光パターンがしばしば瞬いて観察されることが

第16図 ゲンジボタルの各地集団の探雌飛翔発光間隔。 1．長崎県対馬，2．佐賀県小城町，3．熊本県旭志村，4．熊本県山鹿市一目源，5．熊本県山鹿市，6．福岡州市，7．福岡県筑後市舟小屋， 8．宮崎県綾町，9．宮崎県北川町，10．高知県大野見村，11．根県隠岐，12．山口県豊田町江良川，13．兵庫県美方郡温泉町青下， 14.京都府清滝川，15．長野県辰町，16．長野県茅野市，17．新潟県糸魚川市，18．岐阜多治見市，19．新潟県越路町，20．新潟県越路町東谷，21．新潟県長岡市，22．愛知県豊橋市，23．静岡県芝川町，24．山梨県下部町， 25．群馬県吾妻郡東村，26．千葉県大原町， 26．神奈川県逗子市 池子 27．神奈川県三浦市小網代，28．神奈川県横須賀市秋谷， 29 。神奈川県横須賀市野比，30．神奈川県横須賀市長沢，31．神奈川県三浦市引橋，

32．神奈川県横須賀山中町，33．山形県米沢市小野川 34．山形県湯瀬町，35．宮城県東和町，36．岩手県釜石市，37．青森県弘前市，38．青森県青森市．

第17図 ゲンジボタルの各地集団の探雌飛翔時にお ける発光持続時間。
観察地は第16図と同様。

あるが（第 13 図－31，34，40），飛翔発光する雄個体が何らかの要因で刺激を受けたり，興奮状態に陥ったことなどにより，小ピークが発現さ れたと考えられる。この固有周期は他のホタル類，ヒメボタル・ヘイケボタル・Pteroptyx effulgensにも認められ（大場，1999），発光パター ンの制御機構は基本的にこれらのホタル類と同様 と推定される。

発光パターンからみると，大きく分けて発光間隔が約 4 秒（東日本型）と 2 秒（西日本型）が認め られ，両型の分布境界域に約3秒の中間型が分布 することはOHBA（1983，1984），大場（1986， 1988，1991）によって示されてきたが，今回の多数の発光パターン解析により，さらに詳細な実態が判明した。中間型に近い型の集団が熊本県山鹿市•佐賀県小城町•福岡県筑後市のほか，岩手県釜石市などで確認された。しかし，これらの うち九州のものは同調性が高く，他の集団とは異 なっている。佐賀県小城町の集団はD N A の分析により，他集団に比較すると特異であることが明らかにされている（鈴木ほか，2000）ので遺伝的背景と関連させながら今後さらに研究の余地が ある。 2 秒型と 4 秒型の分布境界域は今回の結果

から太平洋側では岐阜県多治見市と愛知県豊橋市，中部地方では長野県辰野町と茅野市，日本海側では新潟県越路町と長岡市付近にあり，その周辺域に中間型が分布すると考えられる。この実態はD N A 解析結果（鈴木ほか，2000）ともほぼ一致している。

分布境界域はほぼ糸魚川－静岡構造線が第一義的な要因と推定できるが，完全に一致していない。 ゲンジボタルは河川に依存して生活していること から，日本海では信濃川などの河川の存在や，人間活動による分布の擋乱•拡散などが関与したと考えられる。中部地方の辰野町と茅野市周辺は糸魚川－静岡構造線と一致した地域であり，歴史的背景が温存されてきた結果と考えられる。

全国各地の集団について雄の飛翔発光パター ンを発光間隔（第16図）に発光持続時間（第17図）を加算して，各生息地を西から東の順で並べ ると，大きく分けて次の 3 パターンが認められ る。1）発光間隔が 2 秒前後，発光持続時間が 0.6秒前後，2）発光間隔は約 3 秒，発光持続時間は約 1 秒，3）発光間隔は 4 秒以上，発光持続時間 は約2秒。長崎県対馬の集団は最も発光間隔が短 く，次いで福岡県北九州市の集団であった。さら に佐賀県小城町と熊本県山鹿市の集団は発光間隔と発光持続時間も明らかに長い発光パターン であり，ここでは西日本 3 秒型とする。この型の存在は 2 秒型とは異なる時代に九州に分布拡散 したものが， 2 秒型が優占されたなかで，局所的 に残存した集団と考えることができる。一方， 2秒型と 4 秒型の境界域周辺の新潟県長岡市や静岡県芝川町に分布する。これらの型は中間型と もいえる集団であり， 2 秒型と 4 秒型の分布接点 で形成された集団と考えられる。また，岩手県釜石市にも 3 秒型が記録されているが，この集団の同時明滅の周期性が低く，同期していない個体の発光信号が受光されている可能性がある。釜石 の集団の波形は， 2 つめの発光シグナルを除くと ほぼ 4 秒型に相当する。また，一方では 2 秒型が移入されて 4 秒型と交雑した可能性も残り，これ らの点については更に研究の余地がある。新潟

第18図 ゲンジボタルの各地集団の探雌飛翔時にお ける発光間隔と発光持続時間。
縦軸は発光間隔に発光持続時間を積み重ね て表示した。暗色部分が発光持続時間。観察地は第 16 図と同様。

県越路町では，同町内の東谷では発光間隔が2秒前後であるが，他の生息地では約 4 秒であり，近 い距離に異なる発光パターンの集団が生息する ことは興味深い。両集団の分布やすみ分けの実態を解明する上で重要な地域といえる（第18図）。同様なことは長野県辰野町に2秒型が，茅野市に は4秒型が分布し，両型の分布境界域となつてい る。この境界域は糸魚川－静岡構造線に一致し，地理的な背景が両型のすみわけを維持してきた ものと考えられる。太平洋側では 2 秒型と 4 秒型の境界域は岐阜県多治見市と愛知県豊橋市付近にあるが，中間型は静岡県芝川町であり，その分布は糸魚川－静岡構造線に一致する。こうした分布状態は第1義的には糸魚川－静岡構造線に起因していると推定できるが，日本海では信濃川の ような大きな河川の存在により，洪水などの要因 によって 2 秒型を新潟県長岡市付近まで分布拡散させたと考えられる。一方，太平洋側では 2 秒型が岐阜県付近で木曾山脈に分布拡散を阻まれ たが，その後，分布拡散経路を別にした集団が東日本へ拡散する際に突然変異などによって 4 秒型となり東日本へ侵入し，その一波が豊橋付近ま で西進した可能性が考えられる。長崎県対馬の

集団が最も短い発光間隔であり，神奈川県横須賀市と千葉県大原町の集団は発光間隔が $4 \sim 6$ 秒，発光持続時間も 2 秒前後と他の集団に比較して も長い。以後北上するにつれて短くなる特徴が認められる。神奈川県内のなかでも，横須賀市の南部に位置する三浦市引橋や小網代の集団は発光間隔が横須賀市の集団よりもやや短い傾向が認められる。以上のように， 2 秒型と 4 秒型には各地域集団によって変異が認められ，一様では ないことから，各地域集団の遺伝的な背景を反映していると考えられる。

こうした発光パターンの変異傾向が遺伝的背景とどのような相関があるのかを検討するため に，鈴木ほか（2000）がミトコンドリアDNAの解析から得た結果の図に，今回得られた発光パ夕 ーン解析結果を重ね合わせた（第20図）。その結果，西日本型，中間型，東日本型などの分布域は ミトコンドリアDNAからみたタイプ分けにほぼ一致している。

ゲンジボタルに形態や習性などが酷似するク メジマボタルは沖縄県久米島にのみ分布するこ とが知られているが， 2 秒型と 4 秒型ゲンジボ夕 ルの中間的な発光パターンや習性を有し，3秒の進化過程を明らかにする上で重要な比較種とい える。

発光パターンの経時•日•年変化

活動習性に反映されて，飛翔発光時間は活動最盛時刻が最も長時間探雌飛翔発光するが，雄 の飛翔発光間隔には大きな経時変化が認められ ない。また，経日および経年変化も有意に認めら れない。このことは配偶行動時に雄の発光パ夕 ーンの変動幅を最小にすることで固有性を高め，雌に認知されやすいように配偶行動様式を適応 した結果と考えられる。

発光コミュニケーション
雌の雄に対する応答発光の遅れ時間は一定で なく，タイミングも一定していない。この結果は OHBA（1983）のLCシステムであることを波形

第19図 ゲンジボタルの生息環境。
1．宮崎県北川町，2．長崎県対馬，3．熊本県山鹿市，4．高知県大野見村，5．長野県茅野市 （標高 900 m ），6．岐阜県多治見市，7．神奈川県横須賀市野比，8．宮城県東和町．

南九州グループ

第20図 ゲンジボタルの発光パターンの地理的変異と遺伝的背景。
鈴木ほか（2000）のゲンジボタルの遺伝的背景に今回得られた発光パターンの解析結果 を重ね合わせて作図した。
： 2 秒型（西日本型），$\bigcirc: 4$ 秒型（東日本型），○： 3 秒型（中間型）•：西日本 3 秒型， ○：東日本 3 秒型。

引用文献

牧野 徹•鈴木浩文•大場信義 1994．パーソナルコ ンピュータによるホタル発光パターンの解析システ ム．横須賀市博研報（自然），（42）：27－56．
中根猛彦 1987．日本の雑甲虫覚書1．北九州の昆虫， 34（3）：173．野比ホタル調査会 1990．横須賀市野比の ホタルの生態と生息環境。横須賀市博研報（自然）， （38）：47－60
OHBA N．1980．Mating behavior of a Japanese Hotaria firefly（Coleoptera：Lampyridae）．Sci． Rept．Yokosuka City Mus．，（27）：13－18．
OHBA N．1983．Studies on the communication system of Japanese fireflies．Sci．Rept．Yokosuka City Mus．，（3̀）：1－62，pls．1－6．
OHBA N．1984．Synchronous flashing in the Japa－ nese firefly，Luciola cruciata（Coleoptera： Lampyridae）．Sci．Rept．Yokosuka City Mus，（32）： 23－32．
大場信義 1985．発光シグナルの記録とその解析法．植物防疫，39（9）：46－51
大場信義 1986．ホタルのコニュニケーシヨン－16，動物その適応戦略と社会－． 241 ページ，東海大学出版会。

大場信義 1984．ゲンジボタルの同時明滅．横須賀市博研報（自然），（32）：23－32．
大場信義 1988．ゲンジボタル． 198 ページ，文一総合出版。
大場信義 1991．ゲンジボタルの遺伝子東西で異な る．遺伝，45（10）：8－9．
大場信義•東 清二•西山桂一•後藤好正•鈴木浩文•佐藤安志•川島逸郎 1994．クメジマボタルの生態．横須賀市博研報（自然），（42）：13－26．
大場信義 1999．パプア・ニューギニアのホタル Pteroptyx effulgens の集団同時明滅横須賀市博研報 （自然）（46）：33－40．
沖縄県教育委員会 1997．クメジマボタル生息実態緊急調査報告書，沖縄県天然記念物調査シリーズ第 37 集： 44 ページ。
SUZUKI，H．，SATO Y．，FUJIYAMA S．and OHBA N．1996．Allozymic differentiation between two ecological types of flashing behavior in the Japa－ nese firefly，Luciola cruciata．J．Ent．，64（3）：682－ 691.

鈴木浩文•佐藤安志•大場信義 2000．ミトコンドリ アDNAからみたゲンジボタル集団の遺伝的な変異 と分化．全国ホタル研究大会誌，（33）：30－34．

資料 1．宮崎県北川町におけるゲンジボタルの発光行動．
1999年5月31日 深瀬 無風

時刻	気温 $\left({ }^{\circ} \mathrm{C}\right)$	
$19: 30$	18	水温 $16.4^{\circ} \mathrm{C}$
$19: 45$		発光開始
$20: 00$		対岸に飛翔
$20: 35$	17.9	発光が連鎖し
		て伝わる

資料2．長野県茅野市宮川における照度変化と気温，ゲンジ ボタルの発光開始時刻。

時刻	照度 (lx)	気温 $\left({ }^{\circ} \mathrm{C}\right)$	
$19: 00$		19.1	地温 $22.4^{\circ} \mathrm{C}$
$19: 05$	13.7		水温 $14.3^{\circ} \mathrm{C}$
$19: 06$	10.4	18.9	
$19: 07$	9.3	18.7	
$19: 10$	6.45	18.2	
$19: 11$	5.91	18.2	
$19: 12$	4.61	18.0	
$19: 13$	4.09	17.8	
$19: 14$	3.55	18.5	
$19: 15$	2.53	18.5	夕焼け
$19: 17$	1.70	19.3	無風
$19: 20$	1.15	18.5	
$19: 21$	0.75	18.7	
$19: 22$	0.64	18.5	
$19: 24$	0.42	18.1	
$19: 25$	0.34	19.0	
$19: 26$	0.23	18.7	
$19: 27$	0.20	18.1	
$19: 28$	0.17	18.9	
$19: 29$	0.13	19.0	
$19: 30$	0.10	18.3	
$19: 31$	0.07	18.9	
$19: 32$	0.06	18.0	
$19: 33$	0.05	17.6	
$19: 34$	0.04	18.0	
$19: 35$	0.03	18.1	
$19: 43$		Pr	

19：43 ヘイケボタル 1 個体飛翔 20：30 ゲンジボタル 1 個体飛翔 ゲンジボタル雌発光
1997年7月22日
19：50

ゲンジボタル発光
20：15
20：30
\qquad
22.0
19.7 ヘイケボタル

群 飛発光

資料 3．神奈川県横須賀市野比におけるゲンジボタルの発光開始時刻と照度。

時刻	照度（1x）	気温 $\left({ }^{\circ} \mathrm{C}\right)$	
		19.5	
$18: 51$		19	
$18: 56$	100	19	カエル鳴く
$19: 00$	60		18.5
		水温 $16^{\circ} \mathrm{C}$	
$19: 09$	20	18	
$19: 14$	101		
$19: 15$	1 以下		発光開始
1986 年 6 月 15 日	晴		
$19: 03$	80		
$19: 06$	50		
$19: 07$	30	21	
$19: 08$	20	20	半月
$19: 13$	15	20	
$19: 15$	10		発光開始
$19: 50$			群飛

資料 4．神奈川県横須賀市野比における照度と気温。 1997年5月26日測定

時刻	照度 (lx)	気温 $\left({ }^{\circ} \mathrm{C}\right)$
$19: 03$	0.24	
$19: 05$	0.24	17.5
$19: 10$	0.13	17.5
$19: 15$	0.06	17.5
$19: 17$	0.04	17.5

資料 5．神奈川県横須賀市野比におけるゲンジボタルの発光行動•照度•気温。
1998年5月26日 下流域

時刻	照度 (lx)	気温 $\left({ }^{\circ} \mathrm{C}\right)$
$18: 54$	2.23	14.2
$18: 55$	1.29	14.2
$18: 56$	1.50	14.4
$18: 57$	1.40	14.2

18：58	1.37	14.0		19：45	飛翔個体減少		
18：59	1.43	14.0			飛翔状況前日と異なる		
19：00	1.23	14.0		19：51	3 個体飛翔		
19：01	0.75	14.2		19：57	再び飛翔開始		
19：02	0.62	14.2		20：08	5 個体飛翔		
19：03	0.56	14.1		20：11	$19.7^{\circ} \mathrm{C} 10$ 個体低く飛翔		
19：04	0.56	14.1					
19：05	0.53	14.3		資料8．	神奈川県横須賀市野比におけるゲンジポタルの		
19：06	0.23	14.1					
19：07	0.20	14.3			発光行動•照度•気温。		
19：08	0.17	14.1			1998年6月1日観察		
19：09	0.16	14.2		時刻	照度（lx）	気温	$\left({ }^{\circ} \mathrm{C}\right)$
19：10	0.15	14.2		19：12			風強い
19：11	0.12	14.1		19：13	0.17	20.6	1 個体発光
19：12	－ 0.05	14.2	発光開始	19：14	0.12	20.7	
19：14	2 個体発光			19：15	0.11	20.5	ゴイサギ飛ぶ
19：15	0.04	14.1		19：18	0.07	20.6	2 個体発光
19：23	草の中で 10 個体発光			19：20	0.04		3 個体発光
19：35	1 個体飛翔発光			19：29	0.02	20.7	人工照明の影響大

資料 6．神奈川県横須賀市野比におけるゲンジボタルの発光行動•照度•気温。
1998年5月27日に観察

時刻	照度（lx）	気温 $\left({ }^{\circ} \mathrm{C}\right)$	
$19: 08$	0.12	18.3	1 個体発光
$19: 10$	0.12	18.7	4 個体飛翔
$19: 11$	0.10	18.7	
$19: 14$	0.06	15.0	10 個体飛翔
$19: 18$	0.03		20 個体飛翔
		150 個体飛翔	
$20: 07$		10 個体飛翔	
		草間に休	
$20: 15$		10 個体飛翔	
		周期的に発光	

資料 7．神奈川県横須賀市野比におけるゲンジボタルの発光行動•照度•気温。
1998年5月28日

時刻	照度（lx）	気温 $\left({ }^{\circ} \mathrm{C}\right)$	
$19: 16$	0.05	20.0	5 個体飛翔
$19: 17$	0.08	19.6	
$19: 19$	0.03	19.6	15 個体飛翔
$19: 24$	0.02	20.1	50 個体飛翔

資料 9．神奈川県横須賀市野比におけるゲンジボタルの発光行動•照度•気温。
1998年6月8日 上流域

時刻	照度（lx）	気温 $\left({ }^{\circ} \mathrm{C}\right)$	
$19: 15$	0.32	17.4	上流域で飛翔 発光
$19: 18$	0.15	16.6	
$19: 22$	0.16	16.5	
$19: 24$	0.07	16.5	
$19: 28$	0.03	15.0	
$20: 52$		17.4	150 個体飛翔発
			光

資料 10．神奈川県横須賀市野比におけるゲンジボタルの発光行動•気温•照度。
1999年6月13日 上流域

時刻	照度（lx）	気温 $\left({ }^{\circ} \mathrm{C}\right)$	
$18: 56$	0.10	20.0	
$18: 58$	0.08	19.9	発光開始
$19: 00$	0.05	20.0	
$19: 08$		19.8	
$19: 12$	0.03		

19：15	$0.02 \quad 20.2$		19：26	0.03	21.6	
19：18	0.01		19：27	0.02	21.5	
19：52	木の高い位置を飛ぶ		19：28	0.02	21.8	1 個体発光
20：10	飛翔発光休止					3 個体飛翔
			20：00	観察終了		
資料11．	神奈川県横須賀市山中町におけるゲンジボタル の発光行動•照度•気温． 1998年5月30日 無風		資料 12.	神奈川県三浦市引橋におけるゲンジボタルの 発光行動•照度•気温． 1997年5月25日 水温 $15^{\circ} \mathrm{C}$ 地温 $193^{\circ} \mathrm{C}$		
時刻	照度（1x）	気温（ ${ }^{\circ} \mathrm{C}$ ）	時刻	照度（1x）	気温（ ${ }^{\circ} \mathrm{C}$ ）	
18：50	14	21.7	18：46	12.4	16.4	
18：52	12.0	21.5	18：47	11.4	16.4	
18：53	11.6	21.4	18：48	9.44	16.4	
18：54	10.1	21.5	18：49	8.34	16.4	
18：55	8.89	21.1	18：50	7.37	16.4	
18：56	7.4 ＇ 7	21.1	18：51	6.44	16.4	
18：57	6.79	21.1	18：52	5.50	16.2	
18：58	5.31	21.1	18：53	4.71	16.2	
18：59	4.87	2.7	18：54	4.0	16.2	
19：00	4.12	21.4	18：55	3.36	16.2	
19：01	3.47	21.3	18：56	2.80	16.2	
19：02	2.91	21.3	18：57	2.32	16.2	
19：03	2.42	21.3	18：58	1.95	16.2	
19：04	2.00	21.5	18：59	1.63	16.3	
19：05	1.67	21.0	19：00	1.33	16.3	
19：06	1.37	21.2	19：01	1.13	16.3	
19：07	1.12	21.2	19：02	0.92	16.3	
19：08	0.93	21.1	19：03	0.73	16.3	
19：09	0.76	21.3	19：04	0.58	16.3	
19：10	0.62	21.3	19：05	0.48	16.3	
19：11	0.50	21.3	19：06	0.38	16.3	
19：12	0.41	21.6	19：07	0.30	16.3	
19：13	0.34	21.1	19：08	0.25	16.3	1 個体発光
19：14	0.27	21.3	19：09	0.19	16.3	2 個体発光
19：15	0.22	21.1	19：10	0.15	16.3	
19：16	0.18	21.4	19：11	0.13	16.3	1 個体発光
19：17	0.15	21.5	19：12	0.10	16.3	
19：18	0.12	21.4	19：13	0.08	16.3	
19：19	0.10	21.2	19：14	0.07	16.3	1 個体飛翔
19：20	0.08	21.3	19：15	0.08	16.3	
19：21	0.07	21.5	19：16	0.06	16.3	
19：22	0.06	21.4	19：17	0.06	16.3	2 個体飛翔
19：23	0.05	21.5	19：18	0.06	16.3	
19：24	0.04	21.3	19：19	0.04	16.3	
19：25	0.03	21.5	19：20			4 個体飛翔

[^0]: ＊横須賀市自然•人文博物館 Yokosuka City Museum，Yokosuka，238－0016．
 原稿受付 2000 年 10 月 30 日．横須賀市博物館業績第 549 号

