横須賀市根岸町に露出した更新統横須賀層大津砂泥部層の エスチュアリー堆積物

柴田健一郎*·倉持卓司**·蟹江康光***

Estuarine deposits of the Pleistocene Otsu Sand and Mud Member, Yokosuka Formation at Negishi-cho, Yokosuka City, central Japan

SHIBATA Kenichiro*, KURAMOCHI Takashi** and KANIE Yasumitsu***

キーワード:大津砂泥部層,エスチュアリー (三角江),海進,更新世,横須賀市 Key words: Otsu Sand and Mud Member, estuary, transgression, Pleistocene, Yokosuka City

更新統横須賀層大津砂泥部層の下部は、横須賀市三春町〜大津町付近に分布する。本稿では、 大津町に隣接する根岸町1丁目に露出した大津砂泥部層下部の新露頭に基づき、大津砂泥部層 形成初期の堆積環境を考察した。岩相と産出した軟体動物化石、基盤地形に基づくと、下部か ら上部に向かって河川流路堆積物、氾濫原泥質堆積物、海進残留堆積物、エスチュアリー(三 角江)中央盆堆積物が認められた。従来、内湾または陸棚斜面の堆積物と考えられてきた大津 砂泥部層の堆積初期に、エスチュアリーが存在したことを明らかにした。大津砂泥部層は、酸 素同位体ステージ5eの氷河性海水準変動と、それに伴う下末吉海進の影響を強く受けて形成さ れたと考えられる。

The lower part of the Pleistocene Otsu Sand and Mud Member, Yokosuka Formation is mainly distributed around Miharu-cho and Otsu-cho area, Yokosuka City. Here, sedimentary environment of the lower part of the Otsu Sand and Mud Member is reconstructed on the basis of data from a newly exposed outcrop in 1-chome, Negishi, Yokosuka City. Sedimentary lithofacies, molluscan fossils, and topographic features of basement rocks revealed that the outcrop consists of fluvial channel deposit, floodplain muddy deposit, transgressive lag deposit, and estuarine central basin deposit in ascending order. Although the Otsu Sand and Mud Member have mainly been interpreted to be an inner bay deposit, this paper presents a first record of estuarine sedimentary facies from the lower part of the member. The deposition of the Otsu Sand and Mud Member is interpreted to have been affected by glacioeustatic sea-level change during the marine isotope stage 5e, and the Shimosueyoshi transgression.

* 横須賀市自然・人文博物館 〒238-0016 神奈川県横須賀市深田台95
 ** 葉山しおさい博物館 〒240-0111 神奈川県三浦郡葉山町一色2123-1
 *** ジオ神奈川 〒249-0004 神奈川県逗子市沼間2-9-4-405
 原稿受付 2019年10月10日 横須賀市博物館業績 第744号

はじめに

更新統横須賀層大津砂泥部層は三浦半島北東部の 標高約10~60 m に分布する(走水団研グループ, 1965;蟹江ほか,1977)。横須賀市根岸町1丁目(京 浜急行電鉄久里浜線新大津駅の南西約250 m,第1図 の調査地1)の宅地造成に伴って,標高約12~28 m に大津砂泥部層の下部が露出した。この露頭は大津 砂泥部層としては最も標高の低い場所に露出した露 頭の1つで,大津砂泥部層の初期の堆積過程を検討 するために重要である。筆者らは2015年1月15日 と2月2日に現地調査を行った。本稿では地層の岩 相を記載し,産出した軟体動物化石について記述す る。また,この露頭から北東280 mの横須賀市大津 町4丁目,標高14~22 m に露出した大津砂泥部層 (第1図の調査地2)(柴田ほか,2015)とあわせて, 大津砂泥部層堆積初期の堆積環境を考察する。これ

- Fig. 1 Index map of the investigated outcrops. 1: Outcrop 1 at 1 cho-me, Negishi-cho, Yokosuka City. Arrow indicates a investigated route for a geologic column. 2: Outcrop 2 at 4 cho-me, Otsucho, Yokosuka City (Shibata *et al.*, 2015). Topographic map is from the 1:25,000 scale Yokosuka published by the Geospatial Information Authority of Japan.
- 第1図 調査地のインデックスマップ.1:根岸町1丁目の調査地(調査地1).矢印は柱状図作成ルートを示す.2:大津町4丁目の調査地(調査地2,柴田ほか,2015).地形図は国土地理院発行2万5千分の1地形図「横須賀」を使用.

ら2つの露頭は人工的に覆われ、消失した。

この論文の作成にあたり,柴田は現地調査,論文 執筆,ならびに全体調整,倉持は現地調査と軟体動 物化石の同定,蟹江は現地調査と論文構成の検討を 担当した。

地質概略

大津砂泥部層(蟹江ほか, 1977)は、三浦半島東部 の横須賀市緑ヶ丘から小原台周辺に新第三系の地層 を覆って断片的に分布し、更新統横須賀層の下部を 構成する。中新-鮮新統逗子層または鮮新統池子層 を不整合に覆い. 横須賀層の上部を構成する走水礫 部層に整合に覆われる (蟹江ほか, 1977)。大津砂泥 部層からは挟在するテフラより147 ± 9 kaと143 ± 11 kaのフィッション・トラック年代(鈴木, 1976) が、非造礁性サンゴ化石より100 ± 3 kaの²³⁰Th/²³⁴U 年代(大村ほか, 1984)が, 軟体動物化石より 138 ka の ESR 年代(大村・桜本, 1986)が得られ,下末吉 期(酸素同位体ステージ5e)の堆積物と考えられて いる(町田, 2008)。大津砂泥部層は下末吉期に関東 地方に広がっていた古東京湾(増田, 1992)の南縁 を埋積した地層である。走水団研グループ(1965)は 軟体動物化石,有孔虫化石,花粉化石から外洋の暖 寒両水塊が流れ込む内湾の環境を、蟹江ほか(1994) は軟体動物化石に基づき外洋に面する陸棚斜面の環 境を推定した。また、柴田ほか(2017)は横須賀市自 然・人文博物館付属馬堀自然教育園から産出した軟 体動物化石から上方深海化の傾向を示し、軟体動物 化石群集の変化が下末吉海進に対応するとした。こ れらは主に横須賀市馬堀町周辺に分布する大津砂泥 部層上部のデータに基づくものである。一方、柴田 ほか(2015)は横須賀市大津町4丁目(第1図の調査 地2)に露出した大津砂泥部層下部の軟体動物化石 から. 内湾の潮間帯もしくは干潟の堆積物の存在を 示した。

大津砂泥部層の岩相

調査地1(第1図)ではほぼ水平な層理面を有する 大津砂泥部層が露出し,基盤岩を構成する逗子層は 確認できなかった。本稿では観察された大津砂泥部 層を堆積構造や砕屑物の粒径,大型化石の産出の有 無に基づき4つの岩相に区分した(第2,3図)。

Fig. 2 Stratigraphic cross-section of the Otsu Sand and Mud Member. See Fig. 1 for locations of the investigated outcrops. BRS: Bay ravinement surface, TRS: tidal ravinement surface.

第2図 大津砂泥部層の層序断面図. 1, 2の調査地は第1図を参照. BRS: ベイラビーンメント面, TRS: 潮汐 ラビーンメント面.

岩相A 河川流路堆積物(第3図-1)

[記載]トラフ型斜交層理の発達する礫支持の礫層 と砂層からなる。礫は中礫サイズの泥岩の亜円礫か らなり、中粒〜細粒の砂層に上方細粒化する。化石 は産出しない。トラフ型斜交層理の軸部の傾きから は、北東への古流向が見積もられる。岩相Aは調査 地1の最下部に出現し、下限は不明で、層厚は180 cm以上。岩相Bに覆われる。

[解釈]トラフ型斜交層理は,一方向流によって頂 部が曲線的なデューンの移動と累重によって形成さ れたと考えられる(Southard and Boguchwal, 1990)。 泥岩礫は逗子層が削剥され,運搬されたものと考え られる。北東への一方向流によって形成されたこと, 河川流路堆積物やその構成要素であるバー堆積物に 特徴的な上方細粒化を示すこと(Allen, 1970; Lunt *et al.*, 2004),氾濫原泥質堆積物と解釈される岩相B(後 述)に覆われることから,岩相Aは河川流路堆積物 と解釈される。

岩相 B 氾濫原泥質堆積物(第3図-1,第3図-2) [記載] 灰色(マンセル表色系 5Y6/1)の塊状のシ

- Fig. 3 Photographs of the Otsu Sand and Mud Member and fossils at the investigated outcrop 1. I: Lithofacies A and B. 2: Lithofacies B, C, and D. 3: Lithofacies C. BRS indicates a bay ravinement surface. 4: Plant debris from the Lithofacies B. 5: *Magallana gigas* with horizontal orientation from upper part of the Lithofacies D. 6: *Cyclina sinensis* with vertical orientation from lower part of the Lithofacies D. 7: *Cyclina sinensis* with horizontal orientation from lower part of the Lithofacies D.
- 第3図 根岸町1丁目(調査地1)の横須賀層大津砂泥部層と産出化石.1:岩相Aと岩相B.2:岩相B~D.3:岩相C. BRS はベイラビーンメント面を示す.4:植物片化石(岩相B).5:水平な姿勢で産するマガキ Magallana gigas(岩相D上部).6:垂直な姿勢で産するオキシジミ Cyclina sinensis(岩相D下部).7:水平な姿勢で産するオキシジミ(岩相D下部).

ルトからなり,植物片化石を含む(第3図-4)が軟 体動物化石は産出しない。層厚は340 cm。岩相Aを 整合に覆い,岩相Cにシャープな境界面を持って覆 われる。

[解釈] 塊状のシルトは浮遊状態からの沈積を示 す。植物片化石は堆積物が陸上から運搬されたこと を示す。軟体動物化石が産出せず,海成堆積物や潮 汐堆積物の証拠が認められないことから,岩相Bは 陸上の氾濫原で堆積した泥質堆積物と解釈される (Miall, 1985; Ford and Pyles, 2014)。

岩相C 海進残留堆積物(第3図-2, 第3図-3)

[記載] 中礫サイズの泥岩の円礫から構成される礫 支持の礫層で,分級が悪い。基質は中粒砂からなる。 層厚は 70 cm で標高約 17 ~ 18 m に露出する。岩相 Bを覆い,岩相 D に覆われる。

[解釈] 泥岩礫は基盤岩を構成する逗子層由来と考 えられる。礫は分級が悪く円磨されていること,こ の岩相を挟んで下位の氾濫原泥質堆積物(岩相 B) から上位の内湾堆積物(岩相 D,後述)へ堆積環境が 深くなることから,岩相 C は海進に伴う海進残留堆 積物と考えらえる。

岩相D 内湾堆積物(第3図-2)

[記載] 灰色(マンセル表色系 5Y6/1)の塊状シルトからなる。植物片化石や軟体動物化石が散在して 産出する(第1表)。岩相Cに重なり,層厚は10 m 以上で上限は不明。

[解釈] 塊状のシルトは流水や波浪の影響の弱い環 境での浮遊状態からの沈積を示す。軟体動物化石は内 湾環境を示唆する(後述)。これらから,岩相Dは波 浪の影響が弱い内湾環境で堆積したと考えられる。

軟体動物化石

軟体動物化石は岩相Dから産出した(第1表)。マ ガキ Magallana gigas とオキシジミ Cyclina sinensis が優占し,アサリ Venerupis philippinarum,ウラカ ガミ Dosinia corrugata,ヒメシラトリ Macoma incongrua が 共 産 し た。ウミニナ Batillaria multiformis はごく少量得られた。岩相Dの上部か らは細長く成長したマガキのみが産出し,その他の 化石が岩相Dの下部から得られた。いずれの化石も 保存状態は良好で,地層中に散在して産出した。二 枚貝化石はほとんどが合弁状態であった。オキシジ ミは直立した,または水平な姿勢で(第3図-6,7), マガキは水平な姿勢で(第3図-5)地層に含まれて いた。

直立した姿勢のオキシジミは自生状態で保存され たと考えられるが,水平な姿勢のオキシジミやマガ キは死後の洗い出しや運搬が行われたと考えられ る。しかし,全体として化石の保存状態は良好で,二 枚貝化石は合弁状態で産することから,岩相Dの二 枚貝化石は死後長距離運搬されることなく保存され たと推測される。産出した化石はいずれも内湾環境 を示す種で,岩相Dの下部から産出する二枚貝化石 は水深5~10mに生息する種が多い。一方,岩相D の上部から産出するマガキは,潮間帯から潮下帯に 生息する(鎮西,1982)。これらに基づくと,岩相D は内湾環境で堆積し,下部から上部に向かって水深 が浅くなったことが推測される。細長く成長したマ ガキは泥が恒常的に堆積する環境に適応した生活型 であり(鎮西,1982),マガキを産出する岩相D上部

- Table 1 List of molluscan fossils from the outcrop 1. All molluscan fossils were from Lithofacies D. Habitats are based on Chinzei (1982) and Okutani (2017).
- 第1表 根岸町1丁目(調査地1)の大津砂泥部層から産出した軟体動物化石のリスト.すべて岩相Dから産出.生息 環境は鎮西(1982),奥谷(2017)を参考にした.

Taxa	Abundance	Habitat
Gastropoda		
Batillaria multiformis (Lischke, 1869)	-	Muddy tidal flat
Bivalvia		
Magallana gigas (Thunberg, 1793)	++	Intertidal and subtidal gravel to mud bottom of brackish- water embayments
Venerupis philippinarum (A. Adams & Reeve, 1850)	+	Muddy sand bottom with granules in middle intertidal zone to 10 m depth
Cyclina sinensis (Gmelin, 1791)	++	Muddy sand bottom in lower intertidal zone to 5 m depth
Dosinia corrugata (Reeve, 1850)	+	Fine sand bottom, 5-30 m depth
Macoma incongrua (Martens, 1865)	+	Mud bottom in intertidal zone to 50 m depth

の形成時は、堆積速度が速かったことが推測される。 岩相Dの下部から上部に認められる上方浅海化は、 相対的海水準の低下、もしくは急速な泥質堆積物の 堆積による内湾の埋積を示すと考えられる。わずか に産出した干潟や潮間帯に生息するウミニナ Batillaria multiformisは、上流域の干潟や潮間帯か ら流水やヤドカリなどによって運搬された可能性が 考えられる。

エスチュアリー(三角江)堆積物

岩相A~Dは下部から上部にむかって河川流路堆 積物,氾濫原泥質堆積物,海進残留堆積物,内湾堆 積物と変化する。このような堆積環境の変化は、下 末吉海進に対応すると考えられる。すなわち、北東 へ流れる河川流路(岩相A)とその周囲の氾濫原 (岩相B)が海進によって沈水し、潮汐や波浪によっ て堆積物の一部が侵食され、粗粒な堆積物が海進残 留堆積物(岩相C)として取り残された。その後内湾 環境(岩相D)が広がったと考えられる。岩相Cの基 底はベイラビーンメント面 (Nummedal and Swift, 1987)に相当する。走水団研グループ(1965)は、海 進に伴って溺れ谷を形成した海が北方に開いていた とし、蟹江ほか(1977)は横須賀層堆積前の基盤地形 図を示し、横須賀市森崎から根岸町、大津町、三春 町に向かって北北東に流下する谷が存在したことを 示した。調査地1の大津砂泥部層は、この谷を埋積 した堆積物ということになる。岩相 A~Dと基盤地 形を合わせて考察すると、当時の谷にはエスチュア リー (三角江) が存在したと考えられ, 内湾環境を 示す岩相Dはエスチュアリー中央盆 (Bovd et al. 2006)の堆積物と考えられる(第4図)。

柴田ほか(2015)は、本稿で記載した露頭(調査地 1)から北東280mの標高約14~22mに露出した大 津砂泥部層の露頭(横須賀市大津町4丁目,調査地 2)を記載した(第1,2,5図)。この露頭はおもに極 細粒砂からなり,標高約18mには層厚50cmの円 磨された中礫サイズのスコリア層が挟まれ、スコリ アの直上にはマガキ Magallana gigas が密集して見 られる。標高と円磨されたスコリア,密集したマガ キに基づくと、このスコリア層は本稿で記載した海 進残留堆積物(岩相C)に相当すると考えられ、スコ リア層の基底はベイラビーンメント面に相当する (第2図,第5図-1)。スコリアより下位の極細粒砂 にはウミニナ Batillaria multiformis を優占とする軟 体動物化石が含まれ、潮汐の影響を受けた干潟の環 境が推定される(柴田ほか, 2015)。これは、調査地 1の岩相Aの古流向は南西から北東で(第2図).調 査地1よりも調査地2の方位が下流の環境であった ことと調和的である。調査地2の干潟堆積物のさら に下位には、潮汐による侵食面である潮汐ラビーン メント面 (Allen and Posamentier, 1993) が存在す ると考えられるが、調査地1の岩相Aと岩相Bには 潮汐の証拠が認められないため。調査地1の岩相C の基底は、ベイラビーンメント面と潮汐ラビーンメ ント面が癒着した海進面と解釈できる(第2図)。調 査地2のスコリア層より上位の極細粒砂は、調査地 1の岩相Dと同様にエスチュアリー中央盆の堆積物 と考えられる。その極細粒砂は明瞭な侵食面を持つ 礫層に覆われ(第5図-2),この礫層は調査地1に連 続しない。礫層の堆積作用として, 侵食面をつくり 中礫サイズの礫を運搬・堆積させる流水の影響が推 定される。柴田ほか(2015)はこの礫層を大津砂泥部 層より新しい時代の堆積物とみなしたが、下位のエ

- Fig. 4 Topographic reconstruction of the early depositional stage of the Otsu Sand and Mud Member when sea level was 15 m above modern sea level. Elevation of basement rock is based on base-counter map by Kanie *et al.* (1977). 1 and 2 indicate investigated outcrops (Fig. 1).
- 第4図 大津砂泥部層堆積初期の古地理復元図.海水準 が現在の標高約15 mにあった時期を想定して 作図.基盤岩の標高は蟹江ほか(1977)の基盤 岩コンターマップを参考とした.1と2は調査 地を示す(第1図).

- Fig. 5 Photographs of the Otsu Sand and Mud Member at the investigated outcrop 2. 1: Middle part of the outcrop. BRS indicates a bay ravinement surface. 2: Upper part of the outcrop.
- 第5図 大津町4丁目(調査地2)の横須賀層大津砂泥部層.1: 露頭の中部.BRSはベイラビーンメント面を示す.2: 露頭の上部.

スチュアリー中央盆堆積物を侵食して重なることか ら、エスチュアリー中央盆の沖側に海岸線と平行に 発達した砂嘴を分断する、潮流口堆積物 (Reinson, 1992; Boyd *et al.*, 2006)の可能性が考えられる。

本稿の調査地周辺では標高20m以上に露出する 露頭が少なく,大津砂泥部層堆積後期の堆積過程に 関して不明な点が多い。一方、横須賀市馬堀町~小 原台では標高20m以上に細粒~中粒砂からなる大 津砂泥部層が認められる(走水団研グループ,1965; 蟹江ほか, 1977)。柴田ほか(2017)は本稿の調査地 から東北東約 2.6 km. 横須賀市自然・人文博物館付 属馬堀自然教育園(横須賀市馬堀町4丁目)の標高 35~45 mに露出する大津砂泥部層について、基底 部を構成する軟体動物化石を含む礫層を、海進に 伴った浅海底での波浪による侵食と堆積物のバイパ スによって形成された海進残留堆積物と解釈した。 馬堀自然教育園の大津砂泥部層の基底面は波浪ラ ビーンメント面 (Nummedal and Swift, 1987) に相 当し、 基底部の礫層とそれに重なる粗粒~細粒砂は 外浜の堆積物の可能性が考えられる。このように,大 津砂泥部層全体としては下部から上部に向かって, 河川流路 / 氾濫原, エスチュアリー, 外浜という堆 積環境の上方深海化が認められる。大津砂泥部層は, 酸素同位体ステージ 5e の氷河性海水準変動と、それ に伴う下末吉海進の影響を強く受けて形成されたと 考えられる。

まとめ

・横須賀市根岸町1丁目に露出した更新統大津砂泥

部層の下部を調査した。

- ・下部から上部に向かって河川流路堆積物,氾濫原 泥質堆積物,海進残留堆積物,エスチュアリー(三 角江)中央盆堆積物が認められた。大津砂泥部層 からエスチュアリーの堆積物を初めて見出した。
- ・大津砂泥部層は,酸素同位体ステージ5eの氷河性 海水準変動,ならびに下末吉海進の影響を受けて 堆積した。

謝 辞

奈良建設株式会社には露頭の調査を許可していた だいた。東京学芸大学の西田尚央准教授にはエス チュアリーの堆積物について教えていただいた。感 謝申し上げます。

引用文献

- Allen G. P. and Posamentier H. W. 1993. Sequence stratigraphy and facies model of an incised valley fill: the Gironde Estuary, France. *Journal of Sedimentary Petrology*, 63: 378-391.
- Allen J. R. L. 1970. Studies in fluviatile sedimentation: a comparison of fining-upwards cyclothems, with special reference to coarse member composition and interpretation. *Journal* of Sedimentary Petrology, 40: 298–323.
- Boyd R., Dalrymple R. W. and Zaitlin B. A. 2006. Estuarine and incised-valley facies models. *In* Posamentier H. W. and Walker R. G. eds. *Facies*

models Revised. SEPM Special Publication, (84): 171–235.

鎮西清高1982.カキの古生態学(2).化石,(32): 19-27.

- Ford G. L. and Pyles D. R. 2014. A hierarchical approach for evaluating fluvial systems: Architectural analysis and sequential evolution of the high net-sand content, middle Wasatch Formation, Uinta Basin, Utah. *The American Association of Petroleum Geologists Bulletin*, 98: 1273-1304.
- 走水団研グループ 1965. 三浦半島小原台付近の第四 系.地球科学, (80): 1-11.
- 蟹江康光・新井重三・長沼幸男・大越 章・長田敏明・ 高橋輝男 1977. 三浦半島東部, 横須賀付近の第四 系, 地質学雑誌, 83: 157-168, 図版 1.
- 蟹江康光・横山芳春・渡辺政美・浅見茂雄 1994. 横 須賀市馬堀町の更新世横須賀累層大津層産軟体動 物化石リスト.横須賀市博研報(自然), (42): 83-84.
- Lunt I. A., Bridge J. S. and Tye R. S. 2004. A quantitative, three-dimensional depositional model of gravelly braided rivers. *Sedimentology*, 51: 377-414.
- 町田 洋 2008. 4.3.1 大磯丘陵から下総台地までの第 四系.日本地質学会(編)日本地方地質誌3関東 地方:299-315. 朝倉書店,東京.
- 増田富士雄 1992. 古東京湾のバリアー島. 地質 ニュース, (458): 16-27.
- Miall A. D. 1985. Architectural-element analysis: a new method of facies analysis applied to fluvial deposits. *Earth Science Reviews*, 22: 261–308.

Nummedal D. and Swift D. J. P. 1987. Transgressive

stratigraphy at sequence-bounding unconformities: some principles. *In* Nummedal D., Pilkey O. H. and Howard D. J. eds. *Sea-level Fluctuation and Coastal Evolution. SEPM Special Publication*, (41): 241–260.

- 奥谷喬司(編著)2017.日本近海産貝類図鑑第二版. 1382ページ.東海大学出版会,東京.
- 大村明雄・大村一夫・桜本勇治・辻 喜弘 1984. 南 関東上部更新統産サンゴの 230Th/234U 年代. 第 四紀研究, 23(1): 31-35.
- 大村一夫・桜本勇治 1986. ESR 年代測定法による下 末吉期の貝化石の年代.北村信教授退官記念地質 学論文集: 331-336.
- Reinson G. E. 1992. Transgressive barrier island and estuarine systems. *In* Walker R. G. and James N. P. eds. *Facies Models, Response to Sea Level Change*: 179–194. Geological Association of Canada.
- 柴田健一郎・倉持卓司・蟹江康光 2015. 横須賀市大 津町の更新統横須賀層大津砂泥部層から産出した 無脊椎動物化石. 横須賀市博研報(自然), (62): 25-26.
- 柴田健一郎・倉持卓司・蟹江康光 2017. 横須賀市自 然・人文博物館付属馬堀自然教育園の更新統大津 砂泥部層から産出した軟体動物化石. 横須賀市博 研報(自然), (64): 1-12.
- Southard J. B. and Boguchwal L. A. 1990. Bed form configurations in steady unidirectional water flows, Part 1. Synthesis of flume data. *Journal of Sedimentary Petrology*, **60**: 658–679.
- 鈴木正男 1976. 過去をさぐる科学一年代測定法のす べて一. 234ページ. 講談社,東京.